
Algoritma &
Pemrograman

Saintifik

Departemen Matematika

SCMA601401

Gatot F. Hertono, Ph.D

Minggu-6 – Notasi Asymptot

Asymptotic Notation: Order of Growth

23400)( nnf 12)(2  nng

Suppose, in worst case, a problem can be solved by using two
different algorithms, with time complexity:

Algorithm A: Algorithm B:

Which one is better?

we use Asymptotic Notation (,  dan O)

Background

Order of Growth

,  and O notations

What does it mean?

Names of Bounding Functions

• f(n) = O(g(n)) means C x g(n) is an upper bound
on f(n);

• f(n) = Ω (g(n)) means C x g(n) is a lower bound
on f(n);

• f(n) = (g(n)) means C1 x g(n) is an upper bound
on f(n) and C2 x g(n) is a lower bound on f(n).

 O (big Oh) Notation

i.e. f does not grow faster than g.

Example: f(n) = n3 + 20 n2 + 100.n, then f(n) = O(n3).
Proof:
 n  0, n3 + 20 n2 + 100.n  n3 + 20 n3 + 100.n3 = 121.n3.
Choose c = 121 and n0 = 0, then it completes the definition.

Formal definition:

  (big Omega) Notation

c2.g(n)

f(n)

n0

Formal definition:

  (Big Theta) Notation

c1.g(n)

c2.g(n)

f(n)

n0

Formal definition:

Examples of 

     c c n n n c g n f n c g n1 2 0 0 1 2, , , , () () ()

3n2 + 7n + 8 = (n2) ?

3·n2  3n2 + 7n + 8 

4·n2 3 4 8

n  8

     c c n n n c g n f n c g n1 2 0 0 1 2, , , , () () ()
n2 = (n3) ?

0
0 · n

3  n2  c2 · n
3

True

False, since C1,C2 must be >0

Examples

Properties

Assignment : Based on the definition of ,  and O, prove that

What does asymptotic property imply for an algorithm?

How is the
overall
efficiency of
this
algorithm?

Basic asymptotic efficiency classes
1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

O(1) O(log n) O(n) O(n) O(n log n) O(n2) O(n3) O(2n) O(n2n) O(n!)

Time efficiency of nonrecursive algorithms

General Plan for Analysis

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for input of size n

• Set up a sum for the number of times the basic operation is

executed

• Simplify the sum using standard formulas and rules

Example 1: Maximum element

T(n) = O(?)

Example 2: Element uniqueness problem

T(n) = O(?)

Example 3: Matrix multiplication

T(n) = O(?)

Example 5: Counting binary digits

It cannot be investigated the way the previous
examples are.

