Minggu-5 — Kompleksitas Waktu

Algoritma &
Pemrograman
Saintifik

Gatot F. Hertono, Ph.D

Departemen Matematika
SCMA601401

Let’s consider these algorithms

Problem:. given a sequence of nelements already sorted in ascending order

15,10, 23,45, 100

=)
PR =y Design an algorithm to check whether a value x occurs
9 in the sequence

Simpleidea: Check one by one by comparing x to each elements in the sequence
from the beginning to the end

15,10, 23,45, 100

1

» How many comparisons do we need?
» Is there any other algorithm faster than this idea?

Pt
fa
» »
- .

= v

o

s 2 3
75 "L P
-l N
r PR Cx

Running Time

Running time could be defined as:

. Number of basic/primitive operations or ‘steps’ executed;

e Constant amount of time for each line of pseudocode.

Basic/Primitive operations include:
* Arithmetic operations —such as ‘+, ‘-, ‘*", ‘/’ etc.
e Logical comparisons —such as >, <‘, =, ‘# , ‘<", >
* Function calls.
Assumption:

* Operations are executed sequentially
e All operations cost 1 unit

» The running time depends on the input. Example: an
already sorted sequence is easier to sort.

» The running time of an algorithm is determined by its
input size n

T,(n) = time of algorithm A on length n inputs

Examples of Basic/Primitive Operations

Algorithm Input Types Basic Operations
List Searching List with n elements Comparation
List Sorting List with n elements Comparation
Matrix Product n X n matrices Scalar Products
Prime Factorisation n digit numbers Scalar Division
Polynomial Evaluation | n degree polynomial Scalar Products
Tree Traversal Tree with n nodes Visiting a node

Basic operation: the operation that contributes the most towards the running
time of the algorithm

Time efficiency is analyzed by determining the number of repetitions of the
basic operation as a function of input size

Notes:

B Eliminates dependence on the speed of our computer,
otherwise impossible to verify and to compare

Time Complexity

The complexity of an algorithm is determined by the number of
basic operations and how many time the algorithm computes those
basic operations.

Notes: The complexity analysis is machine independent.

Time complexity of an algorithm will determine the running time
depends on its input size, i.e. the fime complexity is a function of
input size.

Time Complexity maps
“input size"

to
"time" T(n) executed.

To estimate how long a program will run.

To estimate the largest input that can

reasonably be given to the program.

To compare the efficiency of different

algorithms.

To help focus on the parts of code that are

executed the largest number of times.

To choose an algorithm for an application.

Purpose

Time Complexity: an example

Contoh:

Algoritma Time Jumlah

Powerl(real x, positive integer n)

1 hasil «— x b 1
2 forl« 1ton-1do tz n-1
3 hasil «— hasil * x ty n-1
4 return hasil fa 1

dengan demikian dapat dikatakan bahwa running time algoritma POWER1() adalah:
T(n) =t +ta(n - 1)+ ta(n -1)+ tg
=(tb+t)n-1)+({ti+ 1)

Best, Worst and Average Case

Sometimes, given two different inputs with a same size, an
algorithm can have different running time.

Example:
Suppose a sorting algorithm has some inputs with a same size
but different order:

In ascending order
-Input 1: 10, 5, 23,45,1,100 = Average case
-Input 2: 15,10, 23,45,100 — Best case

-Input 3: 100, 45, 23, 10, 5,1 — Worst case

Do those inputs give the same running time?

Best, Worst and Average Case (cont.)

The worst case complexity of the algorithm is the func- .
tion defined by the maximum number of steps taken Steps
on any instance of size n.

The best case complexity of the algorithm is the func-
tion defined by the minimum number of steps taken on
any instance of size n.

The average-case complexity of the algorithm is the
function defined by an average number of steps taken
on any instance of size n.

Remark: All cases are relative to the algorithm
consideration.

. Worst Case

Complexity

;. : ___— Average Case
i Complexity

- Best Case
—— Complexity

Cs)
[S
v Ul ¥
pP /2 N

<O
UNIVERSITAS
INDONESIA
Veritas, Probitus, Justitia
——EsT 1849

Best, Worst and Average Cases (cont.

Let I, denote a set of all input with size n of an algorithm and (/)
denote the number of primitive operations of the corresponding
algorithm when given input .

Mathematically, we can define:

Best-case Complexity. is a function B(n)> B(n)= min{ (/) | 7 €1, }
Worst-case Complexity. is a function W(n)> W(n)=max{ t() | 7 eI, }
Average-case Complexity. is a function A(n)> A(n)= 2 7(1)-p()

iel,

where p(7)is the probability of / occurs as an input of an algorithm.

