
Algoritma & 
Pemrograman 

Saintifik 

Departemen Matematika  

SCMA601401 

Gatot F. Hertono, Ph.D 

Minggu-5 –  Kompleksitas Waktu 



Let’s consider these algorithms 

1,5,10, 23,45, 100 

Problem: given a sequence of n elements already sorted in ascending order 

Design an algorithm to check whether a value x occurs  
in the sequence 

Simple idea: Check one by one by comparing x to each elements in the sequence 
from the beginning to the end 

1,5,10, 23,45, 100 

X 
 How many comparisons do we need? 
 Is there any other algorithm faster than this idea? 



Running Time 

Running time could be defined as: 

• Number of basic/primitive operations or ‘steps’ executed; 

• Constant amount of time for each line of pseudocode. 

Basic/Primitive operations include: 
• Arithmetic operations – such as  ‘+’, ‘-’, ‘*’ , ‘/’ etc. 
• Logical comparisons – such as ‘>’ , ‘<‘ , ‘=‘ , ‘’ , ‘≤’ , ‘≥’. 
• Function calls. 

Assumption: 
• Operations are executed sequentially 
• All operations cost 1 unit 

 The running time depends on the input. Example: an 

already sorted sequence is easier to sort. 

 The running time of an algorithm is determined by its 
input size n 

𝑇𝐴 𝑛 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚 𝐴 𝑜𝑛 𝑙𝑒𝑛𝑔𝑡𝑕 𝑛 𝑖𝑛𝑝𝑢𝑡𝑠 



Examples of Basic/Primitive Operations 

Algorithm Input Types Basic Operations 

List Searching List with n elements Comparation 

List Sorting List with n elements Comparation 

Matrix Product n x n matrices Scalar Products 

Prime Factorisation n digit numbers Scalar Division 

Polynomial Evaluation n degree polynomial Scalar Products 

Tree Traversal Tree with n nodes Visiting a node 

Basic operation: the operation that contributes the most towards the running 

time of the algorithm 

 Eliminates dependence on the speed of our computer, 
otherwise impossible to verify and to compare 

 

Notes: 

Time efficiency is analyzed by determining the number of repetitions of the 

basic operation as a function of input size 



Time Complexity 

The complexity of an algorithm is determined by the number of 
basic operations and how many time the algorithm computes those 
basic operations.  

 Notes:  The complexity analysis is machine independent. 

Time complexity of an algorithm will determine the running time 
depends on its input size, i.e. the time complexity is a function of 
input size. 

Time Complexity maps  

“input size”  

to  

“time” T(n) executed.   

 



Purpose 

• To estimate how long a program will run.  

• To estimate the largest input that can 

reasonably be given to the program.  

• To compare the efficiency of different 

algorithms.  

• To help focus on the parts of code that are 

executed the largest number of times.  

• To choose an algorithm for an application.     



 Time Complexity: an example 



 Best, Worst and Average Case 

Sometimes, given two different inputs with a same size, an 
algorithm can have different running time. 

 

 

Example:  
Suppose a sorting algorithm has some inputs with a same size 
but different order: 
 
-Input 1: 10, 5, 23, 45, 1, 100 
 

-Input 2: 1,5,10, 23,45, 100 
 

-Input 3: 100, 45, 23, 10, 5, 1 
 

Do those inputs give the same running time? 

In ascending order 

Average case 

Best case 

Worst case 



 Best, Worst and Average Case (cont.) 



Best, Worst and Average Cases (cont.) 

Best-case Complexity: is a function B(n)  B(n) = min{ (i)  i In  } 

Let In  denote a set of all input with size n of an algorithm and (i) 
denote the number of primitive operations of the corresponding 
algorithm when given input i. 

Worst-case Complexity: is a function W(n)  W(n) = max{ (i)  i In  } 

Average-case Complexity: is a function A(n)  A(n) =  
 nIi

ipi )().(

where p(i) is the probability of i  occurs as an input of an algorithm. 

Mathematically, we can define: 


