
1

Searching

Rosen 6th ed., §3.1-3.3

2

Searching

• Problem of searching an ordered list.

– Given a list L of n elements that are sorted into
a definite order (e.g., numeric, alphabetical),

– And given a particular element x,

– Determine whether x appears in the list, and if
so, return its index (position) in the list.

3

Search alg. #1: Linear Search

function linear search(x, a)
(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i  n  x  ai) do

i := i + 1
if i  n then location := i
else location := 0
return location {index or 0 if not found}

4

Search alg. #2: Binary Search

• Basic idea: On each step, look at the middle
element of the remaining list to eliminate
half of it, and quickly zero in on the desired
element.

<x >x<x <x

5

Search alg. #2: Binary Search

function binary search (x, a)
(x:integer, a1, a2, …, an: distinct integers)
i := 1 {left endpoint of search interval}
j := n {right endpoint of search interval}
while i<j do {while interval has >1 item}

m := (i+j)/2 {midpoint}
if x>am then i := m+1 else j := m

endwhile
if x = ai then location := i else location := 0
return location

6

Is Binary Search more efficient?

• Number of iterations:
– For a list of n elements, Binary Search can

execute at most log2 n times!!

– Linear Search, on the other hand, can execute up
to n times !!

7

Is Binary Search more efficient?

• Number of computations per iteration:

– Binary search does more computations than
Linear Search per iteration.

• Overall:

– If the number of components is small (say, less
than 20), then Linear Search is faster.

– If the number of components is large, then
Binary Search is faster.

