
Algoritma &
Pemrograman

Saintifik

Departemen Matematika

SCMA601401

Gatot F. Hertono, Ph.D

Minggu-4 – Iterative vs Recursive

What do we know about these algorithm?
Function Fib1(n)

Input: n (n  0)

Output: Bilangan Fibonacci ke-n

if n  1 then

 return(n)

else

 return(Fib1(n-1) + Fib1(n-2))

endif

end Fib1

Function Fib2(n)

Input: n (n  0)

Output: Bilangan Fibonacci ke-n

if n  1 then

 return(n)

else

 Prev:=0;

 Curr:=1

 for i:=2 to n do

 Next := Prev + Curr;

 Prev:=Curr;

 Curr := Next;

 endfor

endif

return(Curr)

end Fib2

Recursive Iterative

Iterative vs Recursive

In general, recursion and iteration perform the same kinds of tasks:
solve a complicated task one piece at a time, and combine the results.

Both approaches result in a process being repeated several times.

In computer programs, repetition is accomplished in one of two ways: either
through recursion or through iteration.

5

4

3

2

+

+

+

+
0

1

Prev

Curr

Next

Top-Down Bottom-Up

In Fibonacci case:

Iterative

Iterative structures usually refers to structures that
contain explicit repetitions of a process, that is,

loops.

A loop must have some sort of stopping criterion.
Usually it is of one of two type:

 predetermined number of iterations through
the loop;

 a specific condition that is achieved.

FOR i = 0 TO 9 DO

 Procedure

i:=0

WHILE (i < 10) DO

 Procedure

 i := i + 1

i:=0

REPEAT

 Procedure

 i := i + 1

UNTIL (i >= 10)

Iterative
Emphasis of iteration: keep repeating until a task is “done”
e.g., loop counter reaches limit

Example 2: xn

Function Power(x: real, n: integer)

Input: x (real), n (n (integer)  0)

Output: xn

Hasil := x

for i:=1 to n-1 do

 Hasil := Hasil * x

endfor

return(Hasil)

end Power

Function fact(n)

Input: n (integer) (n  0)

Output: n!

running_total := 1

while (n > 1)

 running_total := running_total × n

 n := n -1

end

return (running_total)

end fact

Example 1: n!

Recursive
Recursion in computer science is a method where the
solution to a problem depends on solutions to smaller
instances of the same problem. The approach can be applied
to many types of problems, and recursion is one of the central
ideas of computer science. (Wikipedia)

Suatu fungsi rekursif f(x): adalah suatu fungsi dimana evaluasinya
untuk suatu input xi (xi bukan initial input x0) memerlukan evaluasi
fungsi dirinya sendiri untuk input xj yang lain.

Contoh:
Fact(n) = n * Fact(n-1), dengan kondisi awal: Fact(1) = 1
Fibo(n) = Fibo(n-1)+Fibo(n-2), dengan kondisi awal: Fibo(0)=0, Fibo(1)=1
Gcd(a,b)=Gcd(b, a mod b), dengan kondisi awal: Gcd(a,0) = a

A mathematical definition of a function is recursive if the function is defined in terms of itself
(with a slightly smaller argument), and a computer function (subroutine) is recursive if it invokes
itself (with slightly different arguments).

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Recursion

Recursive

A classic example:

Recursive version

Function fact(n)

Input: n (integer) (n  0)

Output: n!

if n = 0 then

 return(1)

else

 return(n * fact(n-1))

endif

end fact

Emphasis of recursion: solve a large problem by breaking it up into smaller
and smaller pieces until you can solve it; combine the results

Notes: Recursive codes have no loops. Repetition is achieved when the subprogram calls
itself repeatedly until it reaches the base case.

Iterative vs Recursive

N Recursive Iterative

10 334 ticks 11 ticks

100 846 ticks 23 ticks

1000 3368 ticks 110 ticks

10000 9990 ticks 975 ticks

100000 stack overflow 9767 ticks

Example 1: N!

Example 2: Fibonacci(n)

(see the slide #3)

Which One is Better?

No clear answer, but there are known trade-

offs.
 “Mathematicians” often prefer recursive

approach.

• Solutions often shorter, closer in spirit
to abstract mathematical entity.

• Good recursive solutions may be
more difficult to design and test.

 “Programmers”, esp. w/o college CS training,

often prefer iterative solutions.

• Somehow, it seems more appealing to
many.

• Control stays local to loop, less
“magical”.

In performance:

Exercises

1. Write an algorithm to compute the mean and variance of 1000 data

2. Write a recursive algorithm to compute:

3. Design an algorithm to compute:

 with

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

t

f(
t)

