
Algoritma &
Pemrograman

Saintifik

Departemen Matematika

SCMA601401

Gatot F. Hertono, Ph.D

Minggu-10 – Fungsi

Definition
Functions are "self contained" modules of code that accomplish a specific task.
• Functions usually "take in" data, process it, and "return" a result.
• Once a function is written, it can be used over and over and over again.
• Functions can be "called" from the inside of other functions.

𝑓 𝑥 = 𝑥2 − 10𝑥 + 5

a=input('masukkan suatu integer: ')

Sol1 = MyFunc(a)

Sol2 = MyFunc(a)+MyFunc(2*a)

function Answer = MyFunc(x)

Answer = (x^2)-(10*x)+5;

“Take in data”

“Process”

“return a result”

Main.m

MyFunc.m

function NameOfFunction (list_of_parameters)

end function

How does a function work?

http://www.cs.utah.edu/~germain/PPS/Topics/functions.html

Functions "Encapsulate" a task (they combine many instructions into a single line of code).
Most programming languages provide many built in functions(e.g. sin(), cos(), sqrt() etc.)

When a function is "called" the program "leaves" the current section of code and begins
to execute the first line inside the function.

Thus the function "flow of control" is:
1. The program comes to a line of code containing a "function call".
2. The program enters the function (starts at the first line in the function code).
3. All instructions inside of the function are executed from top to bottom.
4. The program leaves the function and goes back to where it started from.
5. Any data computed and RETURNED by the function is used in place of the function in

the original line of code.

…

Sol1 = MyFunc(a)

…

function Answer = MyFunc(x)

Answer = (x^2)-(10*x)+5;

Main.m

MyFunc.m

Why do we write functions?

1. They allow us to conceive of our program as a bunch of sub-steps.
(Each sub-step can be its own function. When any program seems too
hard, just break the overall program into sub-steps!)

2. They allow us to reuse code instead of rewriting it.

3. Functions allow us to keep our variable namespace clean (local
variables only "live" as long as the function does). In other words,
function_1 can use a variable called i, and function_2 can also use a
variable called i and there is no confusion. Each variable i only exists
when the computer is executing the given function.

4. Functions allow us to test small parts of our program in isolation from
the rest. This is especially true in interpreted languages, such as
Matlab, but can be useful in C, Java, ActionScript, etc.

http://www.cs.utah.edu/~germain/PPS/Topics/functions.html

Examples
Staff Week 1 Week 2 Week 3 Week 4

Staff 1 55 40 43 35

Staff 2 60 40 40 40

Staff 3 40 40 50 55

Staff 4 55 55 40 35

Staff 5 45 40 40 40

Standard Rate=Rp.1,000,000,-/jam

Overtime bonus (> 40 jam) =
1.5*Standard Rate/jam

DataStaf = [55 40 43 35; 60 40 40 40; 40 40 50 55;

 55 55 40 35; 45 40 40 40];

NumbOfWeek=4;

NumbOfStaff=size(DataStaf,1);

TotalWeekly=zeros(NumbOfWeek,1);,

TotalMonthly=0;

for i=1:NumbOfWeek

 for j=1:NumbOfStaff

 Salary(i,j) = WeekHour(DataStaf(j,i));

 TotalWeekly(i)=TotalWeekly(i)+Salary(i,j);

 end;

 TotalMonthly = TotalMonthly + TotalWeekly(i);

end;

Salary

TotalWeekly

TotalMonthly

function WeekSal = WeekHour(jam)

Rate = 1000000;

if (jam <= 40)

 WeekSal = jam*Rate;

else

 WeekSal =

 (40*Rate)+((jam-40)*1.5*Rate);

end;

Payroll.m

WeekHour.m

Formal vs. Actual Parameters

for i=1:NumbOfWeek

 for j=1:NumbOfStaff

 Salary(i,j) = WeekHour(DataStaf(j,i));

 TotalWeekly(i)=TotalWeekly(i)+Salary(i,j);

 end;

 TotalMonthly = TotalMonthly + TotalWeekly(i);

end;

function WeekSal = WeekHour(jam)

 …

 …

end function

Formal parameters

Actual parameters
Payroll.m

WeekHour.m

Notes:
• Actual parameters could be an expression, constants, or

variables, BUT formal parameters have to be variables

Nested Functions?
% Here is pseudocode of the correct layout of two functions

 function1()

 code;

 code;

 code;

 end;

 function2()

 code;

 code;

 code;

 end;

 % Here is pseudocode of the INCORRECT layout of two functions

 function1()

 code;

 code;

 code;

 % forgot to end the function properly with

 function2()

 code;

 code;

 code;

 end;

 end % accidentally ended the first function AFTER the second!

Subfunctions are not visible outside the file where they are defined.

Examples

function [mean,stdev] = stat(x)
 %STAT Interesting statistics.
 n = length(x);
 mean = avg(x,n);
 stdev = sqrt(sum((x-avg(x,n)).^2)/n);
end

 %-------------------------
 function mean = avg(x,n)
 %AVG subfunction
 mean = sum(x)/n;
 end;

It is saved in one .M file

A subfunction that is visible to the other functions in the same file is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction.

Recursive Functions

n1 = input('Masukkan sebuah integer pertama: ');

n2 = input('Masukkan sebuah integer kedua: ');

Solusi1 = Fakt(n1);

Solusi2 = Fakt(n2);

sprintf('Nilai %d faktorial = %d', n1, Solusi1)

sprintf('Nilai %d faktorial = %d', n2, Solusi2)

function FN = Fakt(n)

if (n==0)

 FN = 1;

else

 FN = Fakt(n-1)*n;

end;

