
T O P I C 7

P R O C E S S A N D
D A T A M O D E L L I N G

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives

1. Able to explain the concept of process and data modelling

2. Able to explain the rules for creating data flow diagram (DFD)

3. Able to create data flow diagram (DFD)

4. Able to explain the rules for creating entity relationship diagram

(ERD)

5. Able to create entity relationship diagram (ERD)

Outline

1. Data flow diagrams concept

2. Creating data flow diagrams

3. ERD concept

4. Creating data flow diagrams

1 . 1
D A T A F L O W
D I A G R A M S

Introduction

• Process model

A formal way of representing how a business system operates

Illustrates the activities or processes that are performed and how

data moves among them

Both for as-is and to-be systems

Part of structured systems analysis and design techniques

• Data flow diagramming

a technique that diagrams the business processes and the data

that pass among them.

Introduction

• Logical process models describe processes without

suggesting how they are conducted Analysis phase

• Physical process models provide information that is

needed to build the system Design phase

Creating DFD

• Use-cases (requirement definition and use-case

description) is the main and fundamental reference in

creating DFD.

• Because most business processes are too complex to be

explained in one DFD, process models are therefore

composed of a set of DFDs.

Creating DFD

• The first DFD provides a summary of the overall system,

with additional DFDs providing more and more detail

about each part of the overall business process.

• Thus, one important principle in process modeling with

DFDs is the decomposition of the business process into

a hierarchy of DFDs, with each level down the hierarchy

representing less scope but more detail.

Relationship among

Levels of DFDs

R
e

a
d

in
g

 D
FD

’s

Elements of Data Flow Diagrams

• Process

– An activity or function performed for a specific business reason

– Manual or computerized

– Every process should be named starting with a verb and ending

with a noun (e.g., “Get Patient Information”).

– Short, but clear (contains enough information).

– Generally, performs only one activity. Avoid using the word “and”

in process names.

– Every process must have at least one input data flow and at least

one output data flow.

Elements of Data Flow Diagrams

• Data flow

– A single piece of data (e.g., patient name, available schedule) or a

logical collection of data (e.g. new appointment)

– Data flows are the glue that holds the processes together.

– Every data flow should be named with a noun.

– Always starts or ends at a process.

– One end of every data flow will always come from or go to a

process, with the arrow showing the direction into or out of the

process.

– Data flows show what inputs go into each process and what

outputs each process produces.

Elements of Data Flow Diagrams

• Data flow

– Every process must create at least one output data flow, because if

there is no output, the process does not do anything.

– Likewise, each process has at least one input data flow, because it

is difficult, if not impossible, to produce an output with no input.

Elements of Data Flow Diagrams

• Data Store

– A collection of data that is stored in some way

– Every data store is named with a noun and is assigned an

identification number and a description.

– Data stores form the starting point for the data model (discussed

in the next chapter) and are the principal link between the process

model and the data model.

– Data flows coming out of a data store indicate that information is

retrieved from the data store.

– Data flows going into a data store indicate that information is

added or updated to the data store.

Elements of Data Flow Diagrams

• Data Store

– All data stores must have at least one input data flow (or else they never

contain any data), unless they are created and maintained by another

information system or on another page of the DFD.

– Likewise, they have at least one output data flow on some page of the

DFD. (Why store data if you never use it?)

– In cases in which the same process both stores data and retrieves data

from a data store, there is a temptation to draw one data flow with an

arrow on both ends.

– This practice is incorrect, however. The data flow that stores data and the

data flow that retrieves data should always be shown as two separate

data flows.

Elements of Data Flow Diagrams

• External entity

– A person, organization, or system that is external to the system

but interacts with it.

– The external entity typically corresponds to the primary actor

identified in the use case.

– External entities provide data to the system or receive data from

the system, and serve to establish the system boundaries.

– Every external entity has a name and a description. The key point

to remember about an external entity is that it is external to the

system, but may or may not be part of the organization.

Elements of Data Flow Diagrams

• Decomposition is the process of representing the system in

a hierarchy of DFD diagrams

– Child diagrams show a portion of the parent diagram in greater

detail

• Balancing involves insuring that information presented at

one level of a DFD is accurately represented in the next level

DFD.

Using a DFD to Define Business Processes

• First DFD in every business process

• Shows the entire system in context with its environment.

• All process models have one context diagram.

• The context diagram shows the overall business process as just one

process (i.e., the system itself) and shows the data flows to and from

external entities.

• Data stores usually are not included on the context diagram, unless

they are “owned” by systems or processes other than the one being

documented.

Context Diagram

• The level 0 diagram shows all the processes at the first level of

numbering (i.e., processes numbered 1 through 3), the data stores,

external entities, and data flows among them.

• The purpose of the level 0 DFD is to show all the major high-level

processes of the system and how they are interrelated.

• All process models have one and only one level 0 DFD.

• Another key principle in creating sets of DFDs is balancing.

• Balancing means ensuring that all information presented in a DFD at

one level is accurately represented in the next-level DFD. This doesn‟t

mean that the information is identical, but that it is shown

appropriately.

Level 0 Diagram

• Processes and some data flows in Level 0 Diagram might not shown

on the context diagram because they are the internal components of

process 0.

• The context diagram deliberately hides some of the system‟s

complexity in order to make it easier for the reader to understand.

Level 0 Diagram

• Each process on the level 0 DFD can be decomposed into a more

explicit DFD, called a level 1 diagram, or level 1 DFD, which shows

how it operates in greater detail.

• Generally, level 1 diagram is created for every major process on the

level 0 diagram.

• Shows all the internal processes that comprise a single process on

the level 0 diagram.

• Shows how information moves from and to each of these processes.

• If a parent process is decomposed into, for example, three child

processes, these three child processes wholly and completely make

up the parent process.

Level 1 Diagrams

• Shows all processes that comprise a single process on the level 1

diagram.

• Shows how information moves from and to each of these processes.

• Level 2 diagrams may not be needed for all level 1 processes.

• Correctly numbering each process helps the user understand where

the process fits into the overall system

Level 2 Diagrams

• Where a process can produce different data flows given different

conditions.

• We show both data flows and use the process description to explain

why they are alternatives

• Tip -- alternative data flows often accompany processes with IF

statements

Alternative Data Flows

• Nothing on the DFD itself shows that the data flows are mutually

exclusive.

• For example, process 2.1 on the level 1 DFD produces three output

data flows (H, J, K). Without reading the text description of process

2.1, we do not know whether these are produced simultaneously or

whether they are mutually exclusive.

Alternative Data Flows

• Text-based process descriptions provide more information

about the process than the DFD alone

• If the logic underlying the process is quite complex, more

detail may be needed in the form of

– Structured English

– Decision trees

– Decision tables

Process Descriptions

1 . 2
C R E A T I N G

D A T A F L O W
D I A G R A M S

• DFDs start with the use cases and requirements definition

• Generally, the DFDs integrate the use cases

• Names of use cases become processes

• Inputs and outputs become data flows

• “Small” data inputs and outputs are combined into a single

flow

Integrating Scenario Descriptions

1. Build the context diagram

2. Create DFD fragments for each use case

3. Organize DFD fragments into level 0 diagram

4. Decompose level 0 processes into level 1 diagrams as

needed; decompose level 1 processes into level 2

diagrams as needed; etc.

5. Validate DFDs with user to ensure completeness and

correctness

Steps in Building DFDs

• Draw one process representing the entire system (process

0)

• Find all inputs and outputs listed at the top of the use cases

that come from or go to external entities; draw as data

flows

• Draw in external entities as the source or destination of the

data flows

Creating the Context Diagram

A Context Diagram Example

• Each use case is converted into one DFD fragment

• Number the process the same as the use case number

• Change process name into verb phrase

• Design the processes from the viewpoint of the

organization running the system

Creating DFD Fragments

• Add data flows to show use of data stores as sources and

destinations of data

• Layouts typically place

– processes in the center

– inputs from the left

– outputs to the right

– stores beneath the processes

Creating DFD Fragments

A DFD Fragment Example

• Combine the set of DFD fragments into one diagram

• Generally move from top to bottom, left to right

• Minimize crossed lines

• Iterate as needed

– DFDs are often drawn many times before being finished, even

with very experienced systems analysts

Creating the Level 0 Diagram

A Level 0 DFD Example

• Each use case is turned into its own DFD

• Take the steps listed on the use case and depict each as a

process on the level 1 DFD

• Inputs and outputs listed on use case become data flows on

DFD

• Include sources and destinations of data flows to processes

and stores within the DFD

• May also include external entities for clarity

Creating Level 1 Diagrams (and Below)

• When to stop decomposing DFDs?

– Depends on the complexity of the system or business

process being modeled.

– In general, you decompose a process into a lower-level DFD

whenever that process is sufficiently complex that additional

decomposition can help explain the process.

– Most experts believe that there should be at least three, and

no more than seven to nine, processes on every DFD.

Creating Level 1 Diagrams (and Below)

1. Syntax errors – diagram follows the rules

– Assure correct DFD structure

Validating the DFD

For each DFD:

check each process for:

A unique name: action verb phrase; number; description

At least one input data flow

At least one output data flow

Output data flow names usually different than input data flow names

Between 3 and 7 processes per DFD

1. Syntax errors – diagram follows the rules

– Assure correct DFD structure

Validating the DFD

For each DFD:

check each process for:

A unique name: action verb phrase; number; description

At least one input data flow

At least one output data flow

Output data flow names usually different than input data flow names

Between 3 and 7 processes per DFD

For each DFD:

Check each data flow for:

 A unique name: noun; description

 Connects to at least one process

 Shown in only one direction (no two-headed arrows)

 A minimum number of crossed lines

 Check each data store for:

 A unique name: noun; description

 At least one input data flow

 At least one output data flow

 Check each external entity for:

 A unique name: noun; description

 At least one input or output data flow

1. Syntax errors – diagram follows the rules

– Assure correct DFD structure

Validating the DFD

For each DFD:

check each process for:

A unique name: action verb phrase; number; description

At least one input data flow

At least one output data flow

Output data flow names usually different than input data flow names

Between 3 and 7 processes per DFD

Across DFDs:

Context Diagram:

Every set of DFDs must have one Context Diagram

Viewpoint:

There is a consistent viewpoint for the entire set of DFDs

Decomposition:

Every process is wholly and complete described by the processes on its children DFDs

Balance:

• Every data flow, data store, and external entity on a higher level

• DFD is shown on the lower level DFD that decomposes it

• No data stores or data flows appear on lower-lever DFDs that do not appear on their

parent DFD

Validating the DFD

• Semantics errors – diagram conveys correct meaning

– Assure accuracy of DFD relative to actual/desired business processes

• To verify correct representation, use

– User validation/walkthroughs

– Role-play processes

• Examine lowest level DFDs to ensure consistent decomposition

• Examine names carefully to ensure consistent use of terms

1. Spontaneous generation (miracles)

 Process with no inputs

2. Black Hole

 Process with no outputs

3. Gray Hole

 The inputs is insufficient to generate the output

Illegal Process

Some Common

Error

Some Common

Error

Illegal Data Flows

A Quick Review of Decomposition for CD

Selections

Context Diagram for CD Selections Internet

Sales System

Level 0 DFD for CD Selections Internet

System

Level 1 DFD for CD Selections Process 1: Take

Requests

• The Data Flow Diagram (DFD) is an essential tool for creating

formal descriptions of business processes.

• Use cases record the input, transformation, and output of

business processes and are the basis for process models.

• Eliciting use cases and modeling business processes are

critically important skills for the systems analyst to master.

Summary

1. Data flow diagrams show what a system does, not how it

does it (T/F).

Test Yourself

1. Data flow diagrams show what a system does, not how it

does it (T/F). True

Test Yourself

Test Yourself

2. The following symbols are from the _____________ set. Name them:

Test Yourself

2. The following symbols are from the Gane and Sarson set. Name

them:

Data Store

Process

Test Yourself

2. Select the correct example below.

Customer Customer

A) B)

Apply

Payment
Accounts

Receivable

Test Yourself

4. Match the terms in the left column to the proper definitions

in the right column.

1. Black Hole

2. Spontaneous

 Generation

 Process

3. Gray Hole

a. A process with at least 1 input and

output, but the input is insufficient

to generate the shown output.

b. A process that has no output

c. Used to describe an unexplained

generation of data or information.

Test Yourself

4. Match the terms in the left column to the proper definitions

in the right column.

1. Black Hole

2. Spontaneous

 Generation

 Process

3. Gray Hole

a. A process with at least 1 input and

output, but the input is insufficient

to generate the shown output.

b. A process that has no output

c. Used to describe an unexplained

generation of data or information.

Create a context diagram for an online university registration system.

The system should enable the staff of each academic department to examine

the courses offered by their department, add and remove courses, and change

the information about them (e.g., the maximum number of students permitted). It

should permit students to examine currently available courses, add and drop

courses to and from their schedules, and examine the courses for which they

are enrolled. Academic department staff should be able to print a variety of

reports about the courses and the students enrolled in them. The system should

ensure that no student takes too many courses and that students who have any

unpaid fees are not permitted to register. (Assume that a fees data store is

maintained by the university‟s financial office, which the registration system

accesses but does not change).

Your Turn!

Your Turn!

Based on use-case description given in the previous page:

1. Create a DFD fragment of “Search and browse tune” use-case, as

part of level 0 DFD.

2. Create a level 1 DFD of “Search and browse tune” use-case

Your Turn!

1 . 3
D A T A

M O D E L L I N G

• Analyst need to understand the information that is used and created

by the business system.

• Data model

– A formal way of representing the data that are used and created by a

business system

– Shows the people, places and things about which data is captured and

the relationships among them.

• Logical data model

– shows the organization of data without indicating how it is stored,

created, or manipulated

– Focus on matching the diagram to the real business requirements of

the system

Data Model

• Physical data model

– shows how the data will actually be stored in databases or files.

• Normalization is the process analysts use to validate data

models.

• Data models should balance with process models

Data Model

• A picture showing the information created, stored, and used by a

business system.

• Entities generally represent similar kinds of information

• Lines drawn between entities show relationships among the data

• High level business rules are also shown

What Is an ERD?

• Business rules are constraints that are followed when the

system is in operation.

• ERD symbols can show when one instance of an entity

must exist for an instance of another to exist (no order)

– A doctor must exist before appointments for the doctor can

be made

Using the ERD to Show Business Rules

• ERD symbols can show when one instance of an entity can

be related to only one or many instances of another entity

–One doctor can have many patients; each patient

may have only one primary doctor

• ERD symbols show when the existence of an entity

instance is optional for a related entity instance

–A patient may or may not have insurance coverage

Using the ERD to Show Business Rules

An ERD Example

ERD Elements

• A person, place, event, or thing about which data is collected

• Must be multiple occurrences to be an entity

– Example: If a firm has only one warehouse, the warehouse is not an

entity. However, if the firm has several warehouses, the warehouse

could be an entity if the firm wants to store data about each

warehouse instance.

– There is no need to capture data in the system about something

having just a single instance

Entity

Entities and Instances

• Information captured about an entity

• Only those used by the organization should be included in

the model

• Attribute names are nouns

• Sometimes entity name is added at the beginning of the

attribute name for clarity

Attributes

• One or more attributes can serve as the entity identifier,

uniquely identifying each entity instance

• Concatenated identifier consists of several attributes

• An identifier may be „artificial,‟ such as creating an ID

number

• Identifiers may not be developed until the Design Phase

Identifiers

Choices for Identifiers

• Associations between entities

• The first entity in the relationship is the parent entity; the second

entity in the relationship is the child entity

• Relationships should have active verb names

• Relationships go in both directions

– Verb “schedule” between Patient and Appointment means:

• A patient schedules an appointment

• An appointment is scheduled by a patient

Relationships

• Cardinality

– refers to the number of times instances in one entity can be

related to instances in another entity

• One instance in an entity refers to one and only one instance in

the related entity (1:1)

• One instance in an entity refers to one or more instances in the

related entity (1:N)

• One or more instances in an entity refer to one or more

instances in the related entity (M:N)

Cardinality

• Modality

– Refers to whether or not an instance of a child entity can exist

without a related instance in the parent entity

• Not Null means that an instance in the related entity must

exist for an instance in another entity to be valid

• Null means that no instance in the related entity is necessary

for an instance in another entity to be valid

Modality

• Can you have an appointment without a doctor ?

• Can you have a bill without an appointment ?

– The modality is not null

• We can have a patient in our system who does not have an insurance

company the modality is null

• A patient can exist in the system without presenting symptoms

• A doctor must be qualified at least one specialty

Modality

M : N Relationships

 Metadata is information stored about components of the data

model

 Metadata is stored in the data dictionary so it can be shared by

developers and users throughout the SDLC

 A complete, shareable data dictionary helps improve the quality of

the system under development

The Data Dictionary and Metadata

Data Dictionary Entry for the Patient Entity

(Shown Using Erwin)

1 . 4
B U I L D I N G

A N E N T I T Y
R E L A T I O N S H I P

D I A G R A M

 Drawing the ERD is an iterative process of trial and revision

 ERDs can become quite complex

There are systems that have ERDs containing hundreds or

thousands of entities

ERD Basics

 Identify the entities

 Add attributes and assign identifiers

 Identify relationships

Steps in Building ERDs

Identify major categories of information

If available, check the process models for data stores, external entities, and data

flows

 Check the major inputs and outputs from the use cases

Verify that there is more than one instance of the entity that occurs in

the system

Identify the Entities

Identify attributes of the entity that are relevant to the

system under development

Check the process model repository entries for details on data

flows and data stores

Check the data requirements of the requirements definition

Interview knowledgeable users

Perform document analysis on existing forms and reports

Select the entity‟s identifier

Add Attributes and Assign Identifiers

 Start with an entity and identify all entities with which it

shares relationships

 Describe the relationship with the appropriate verb phrase

 Determine the cardinality and modality by discussing the

business rules with knowledgeable users

Identify Relationships

 Data stores of the DFD should correspond to entities

 Only include entities with more than one instance of

information

 Don‟t include entities associated with implementation of

the system (they will be added later)

ERD Building Tips

 Independent Entity (Strong Entity)

 Can exist without the help of another entity

 Identifiers created from the entity‟s own attributes

 Attributes from other entities are not needed to uniquely identify

instances of these entities

 Include an independent child entity non-identifying

relationship

Advanced Syntax (1)

 Dependent Entity (Weak Entity)

 Relationships when a child entity does require attributes from the

parent entity to uniquely identify an instance at least one

attribute

 Have a dependent child entity identifying relationships

 Appointment

Advanced Syntax (2)

 Intersection Entity

 Exists in order to capture some information about the

relationship that exists between two other entities. Typically,

intersection entities are added to a data model to store

information about two entities sharing an M : N relationship.

Advanced Syntax (3)

Advanced Syntax – Resolving an M : N

Relationship

1 . 5
V A L I D A T I N G A N

E R D

Design Modeling Guidelines Summary

 Technique used to validate data models

 Series of rules applied to logical data model to improve its

organization

 Three normalization rules are common

Normalization

Normalization Steps

Un-normalized Entity

Begin with an entity from

the logical data model

First Normal Form (1NF)

Look for repeating groups of attributes and remove them into

separate entities

Second Normal Form (2NF)

If an entity has a concatenated identifier, look for attributes that

depend only on part of the identifier. If found, remove to new entity.

Third Normal Form (3NF)

Look for attributes that depend only on another non-identifying

attribute. If found, remove to new entity. Also remove any calculated

attributes.

 All analysis activities are interrelated

 Process models contain two data components

 Data flows and data stores

 The DFD data components need to balance the ERD‟s data stores

(entities) and data elements (attributes)

 Many CASE tools provide features to check for imbalance

 Check that all data stores and elements correspond between models

 Data that is not used is unnecessary

 Data that has been omitted results in an incomplete system

 Do not follow thoughtlessly -- check that the models make sense!

Balancing ERDs with DFDs (1)

Balancing ERDs with DFDs (2)

 Take a look at the DFD in Figure 6-8 and ERD in Figure 7-1.

 The doctor, payment and insurance company do not appear on the

DFD as data store.

Balancing ERDs with DFDs (3)

Partial Process Model and CRUD Matrix

 The ERD is the most common technique for drawing data
models. The building blocks of the ERD are:

 Entities describe people, places, or things

 Attributes capture information about the entity

 Relationships associate data across entities

 Intersection, dependent, and independent entities must be
recognized.

 The ERD must be balanced with the DFD.

Summary

Draw an entity relationship diagram (ERD) for the following

situations:

Whenever new patients are seen for the first time, they complete a

patient information form that asks their name, address, phone number,

and insurance carrier, all of which are stored in the patient information

file. Patients can be signed up with only one carrier, but they must be

signed up to be seen by the doctor. Each time a patient visits the doctor,

an insurance claim is sent to the carrier for payment. The claim must

contain information about the visit, such as the date, purpose, and cost.

It would be possible for a patient to submit two claims on the same day.

Your Turn

Draw an entity relationship diagram (ERD) for the following situations:

Jim Smith‟s dealership sells Fords, Hondas, and Toyotas. The dealership keeps

information about each car manufacturer with whom it deals so that

employees can get in touch with manufacturers easily. The dealership also

keeps information about the models of cars that it carries from each

manufacturer. It keeps such information as list price, the price the dealership

paid to obtain the model, and the model name and series (e.g., Honda Civic

LX). The dealership also keeps information about all sales that it has made.

(For instance, employees will record the buyer‟s name, the car the buyer

bought, and the amount the buyer paid for the car.) To allow employees to

contact the buyers in the future, contact information is also kept (e.g., address,

phone number, e-mail)

Your Turn

 Systems Analysis and Design: An Object Oriented Approach 5th ed.
Alan Dennis, Barbara Haley Wixom, and Roberta M. Roth © 2015

References

