
T O P I C 4

F U N C T I O N A L
M O D E L L I N G

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives

1. Able to explain the rules and component of a use case and use-

case diagram

2. Able to explain how to create use case and use-case diagram

3. Able to explain the rules and component of an activity diagram

4. Able to create functional model by using activity diagrams, use

cases, and use-case diagrams

Session Outline

1. Use Case Diagram

2. Activity Diagram

3. Use Case Description

4. Functional Model (Use Cases as core building blocks): Creating,

Verify and Validating Activity Diagram and Use Case Descriptions

and Use Case Diagrams

5. (Additional) Use Case Ranking and Prioritization Matrix for Project

Management (Estimation)

Introduction

• ….

• Project team gathers requirements from the users (last week)

• Using the gathered requirements, the project team then identifies the business
processes and their environment using use cases and use-case diagrams

• Next, users work closely with the team to model the business processes in the
form of activity diagrams, and the team documents the business processes
described in the use-case and activity diagrams by creating a use-case description
for each use case

• Finally, the team verifies and validates the business processes by ensuring that all
three models (use-case diagram, activity diagram(s), and use case descriptions)
agree with one another.

• Once all documented, the team is ready to move on to structural modeling (next
week)

• ….

Introduction

1. Functional Model:

• Use Case Diagram, Activity Diagram

2. Structural Model (Conceptual Model):

• Class Diagram, Object Diagram

3. Behavioral Model:

• Interaction Diagram, Behavioral State Machines

This slide is focused on: Functional Model (Use Case and Activity

Diagram)

Key Ideas from the modelling perspectives

• Use cases (Use cases diagram and use case description) are the logical model

used to describe to basic functions of an information system

– Understand the rules and style guidelines for use cases and use case

diagrams.

– Understand the process used to create use cases and use case diagrams.

– Become familiar with the use of use case points

• Activity diagrams support the logical modeling of business processes and

workflows

– Understand the rules and style guidelines for activity diagrams

– Activity diagrams can be used to represent Business Process Model of the IS

• Both can be used to describe As-Is and To-Be of IS

1 . 1
U S E C A S E S

&
U S E - C A S E

D I A G R A M S

Overview

• An analyst can employ use cases and the use-case diagram to better

understand the functionality of the system at a very high level.

• Typically, because a use-case diagram provides a simple, straightforward

way of communicating to the users exactly what the system will do, a use-

case diagram is drawn when gathering and defining requirements for

the system.

• In this manner, the use-case diagram can encourage the users to provide

additional high-level requirements.

• A use-case diagram illustrates in a very simple way, the main functions

of the system and the different kinds of users that will interact with it

Syntax for Use-Case Diagram

Syntax for Use-Case Diagram

Actor and Association

• An actor is not a specific user, but a role that a user can play while interacting

with the system.

• An actor can also represent another system in which the current system interacts.

• In this case, the actor optionally can be represented by a rectangle with

<<actor>> and the name of the system.

• Basically, actors represent the principal elements in the environment in which the

system operates.

• Actors can provide input to the system, receive output from the system, or

both.

The Use-Case Diagram for Appointment

System

Actor & Association

• Sometimes an actor plays a specialized role of a more general type of actor.

• For example, there may be times when a new patient interacts with the system

in a way that is somewhat different than a general patient.

• In this case, a specialized actor (i.e., new patient) can be placed on the model,

shown using a line with a hollow triangle at the end of the more general actor

(i.e., patient).

• The specialized actor will inherit the behavior of the more general actor and

extend it in some way.

• Actor specialization is related to use case generalization (see Use Case

(generalization example) slide)

The Use-Case Diagram for Appointment

System (a Specialized Actor added)

Use Case

• A use case, depicted by an oval in the UML, is a major process that the system

will perform that benefits an actor(s) in some way, and it is labeled using a

descriptive verb-noun phrase

• There are times when a use case includes, extends, or generalizes the

functionality of another use case on the diagram.

• These are shown using include, extend, and generalization relationships.

• To increase the ease of understanding a use case diagram, ―higher-level‖ use

cases normally are drawn above the ―lower-level‖ ones.

Use Case Extend Relationship (example)

• Let‘s assume that every time a patient makes an appointment, the

patient is asked to verify payment arrangements.

• However, occasionally it is necessary to actually make new

payment arrangements.

• Therefore, we may want to have a use case called Make Payment

Arrangements that extends the Make Appointment use case to

include this additional functionality.

 The Make Payment Arrangements use case was drawn lower than the Make

Appointment use case

The Use-Case

Diagram for

Appointment

System

(Extend

Relationships

added)

Use Case Include Relationship (example)

• Similarly, there are times when a single use case contains common

functions that are used by other use cases.

• For example, suppose there is a use case called Manage Schedule that

performs some routine tasks needed to maintain the doctor‘s office

appointment schedule, and the two use cases Record Availability and

Produce Schedule Information both perform the routine tasks

• We can design the system so that Manage Schedule is a shared use case

that is used by others.

• An arrow labeled with include is used to denote the include relationship

and the included use case is drawn below the use cases that contain it.

The Use-Case

Diagram for

Appointment

System

(Include

Relationships

added)

Include VS Extend Relationship

• Misconception about extend and include relationship

– includes are always and extends are sometimes

– Not about always and sometimes, but inclusion and optional behavior

• Include Relationship

– A base use case is dependent on the included use case(s); without it/them

the base use case is incomplete as the included use case(s) represent sub-

sequences of the interaction that may happen always OR sometimes.

– The base use case knows about (and refers to) the included use case, but the

included use case shouldn‘t ‗know‘ about the base use case.

– This is why included use cases can be: a) base use cases in their own right

and b) shared by a number of base use cases.

Include VS Extend Relationship

• Extend Relationship

– The extending use case is dependent on the base use case;

– It literally extends the behavior described by the base use case. The base use

case should be a fully functional use case in its own right without the

extending use case‘s additional functionality.

– The base use case represents the ―must have‖ functionality of a project while

the extending use case represents optional (should/could/want) behavior.

This is where the term optional is relevant – optional whether to build/deliver

rather than optional whether it sometimes runs as part of the base use case

sequence.

http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram

http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram
http://stackoverflow.com/questions/1696927/whats-is-the-difference-between-include-and-extend-in-use-case-diagram

Use Case (Generalization example)

• Finally, there are times that it makes sense to use a generalization relationship to

simplify the individual use cases.

• For example, the Make Appointment use case has been specialized to include a use

case for an Old Patient and a New Patient.

• The Make Old Patient Appt use case inherits the functionality of the Make

Appointment use case (including the Make Payment Arrangements use case

extension) and extends its own functionality with the Update Patient Information use

case.

• The Make New Patient Appt use case also inherits all of the functionality of the

generic Make Appointment use case and calls the Create New Patient use case,

which includes the functionality necessary to insert the new patient into the patient

database.

Use Case (Generalization example)

• The generalization relationship is represented as an unlabeled hollow

arrow with the more general use case being higher than the lower-

use cases.

• Also notice that we have consequently added a second specialized

actor, Old Patient, and that the Patient actor is now simply a

generalization of the Old and New Patient actors.

The Use-Case

Diagram for

Appointment

System

(Generalization

Relationships

added)

Subject (System) Boundary

• The use cases are enclosed within a subject boundary, which is a box that defines the

scope of the system and clearly delineates what parts of the diagram are external or

internal to it.

• One of the more difficult decisions to make is where to draw the subject boundary.

– A subject boundary can be used to separate a software system from its environment, a

subsystem from other subsystems within the software system, or an individual process in

a software system.

– They also can be used to separate an information system, including both software and

internal actors, from its environment. As such, care should be taken to carefully decide on

what the scope of the information system is to include.

• The name of the subject can appear either inside or on top of the box.

• The subject boundary is drawn based on the scope of the system

The Use-Case Diagram for Appointment

System

System

Boundary

Major Steps in Writing Use Cases & Use-

case Diagram

1. Identifying the Major Use Cases

a. Review Requirements Definition

b. Identify Subject‘s Boundaries

c. Identify Primary Actors & Goals

d. Identify Business Processes & Major Use Cases

e. Review Current set of Use Cases

2. Creating a Use-case Diagram

a. Place & Draw Use Cases

b. Place & Draw Actors

c. Draw Subject Boundary

d. Add Associations

1 . 2
B U S I N E S S
P R O C E S S

M O D E L I N G W I T H
A C T I V I T Y

D I A G R A M S (F O R
U S E C A S E S)

BPM With Activity Diagrams (1)

• Activity diagram typically used to augment our understanding of the

business processes and our use cases model.

• Technically, an activity diagram can be used for any type of

process-modeling activity.

– Can be used to model everything from a high-level business workflow that

involves many different use cases, to the details of an individual use case, all

the way down to the specific details of an individual method.

• In this course, we restrict our coverage of activity diagrams to

documenting and modeling high-level business processes

• Process models depict how a business system works

• Process models illustrate the processes or activities that are

performed and how objects (data) move among them.

• Business process models typically cut across functional
departments

– For example, the creation of a new product involves many different
activities that combine the efforts of many employees in many
departments)

BPM With Activity Diagrams (1)

Best practices when modeling business

processes from Martin Schedlbauer

• Be realistic  imposible to identify everything, everything is not equally important

• Be agile

• All modeling is a collaborative/social activity

• Do not use a CASE tool, use whiteboards instead

• Should be done in an iterative manner

• Stay focused on a specific process, if tasks associated with other business processes

are identified, simply record them on a to-do list thing and get back to the business

process you are currently modeling

• A business process model is an abstraction of reality, you should not include every

minor task.

Elements of an activity diagram

Elements of an activity diagram

Elements of an activity diagram

Elements of an activity diagram

• Actions & Activities

– Actions & activities are performed for some specific business reason

– Can represent manual or computerized behavior

– Should have a name that begins with a verb and ends with a noun

– An activity can be further decomposed further into a set of activities

and/or actions

– An action represents a simple non-decomposable piece of the overall

behavior being modeled

Elements of an activity diagram

• Object Nodes

– Activity and actions typically modify or transform objects; object nodes

model these objects.

– Essentially, object nodes represent the flow of information from one activity

to another activity

• Control Flows & Object Flows

– Control flows model the paths of execution through a business process

• Control flows can be attached only to actions or activities

– Object Flows model the flows of objects through a business process

• Object flows are necessary to show the actual objects that flow into and out of

the actions or activities

Elements of an activity diagram

• Control Nodes (7 types):

1. Initial nodes: portray the beginning of a set of actions or activities

2. Final-activity nodes: used to stop the process being modeled (regardless of

whether they are completed)

3. Final-flow nodes: similar to a final-activity node, except that it stops a

specific path of execution through the business process but allows the

other concurrent or parallel paths to continue

4. Decision nodes: used to represent the actual test condition that determines

which of the paths exiting the decision node is to be traversed; each exiting

path must be labeled with a guard condition

Elements of an activity diagram

• Control Nodes (7 types):

5. Merge nodes: used to bring back together multiple mutually exclusive

paths that have been split based on an earlier decision

6. Fork nodes: used to split the behavior of the business process into multiple

parallel or concurrent flows

7. Join nodes: simply brings back together the separate parallel or concurrent

flows in the business process into a single flow

Elements of an activity diagram

• Swim lanes

– When modeling a business workflow, it is especially beneficial to break up an

activity diagram in a manner that is useful in assigning responsibility to

objects or individuals that would actually perform the activity

– You could also draw the activity diagram using more of a left-to-right

orientation instead of a top-down orientation

– In an actual business workflow, we would see that we had activities that

should be associated with roles of individuals that are involved in the

business workflow (e.g., employees or customers) and the activities that were

to be accomplished by the information system that was being created.

• This association of activities with external roles, internal roles, and the system is

very useful when creating the use case descriptions and diagram described later

Activity

Diagram

Example

Guidelines for Creating Activity Diagrams

from Scott Ambler
1. Since an activity diagram can be used to model any kind of process,

you should set the context or scope of the activity being modeled.

Once you have determined the scope, you should give the diagram

an appropriate title.

2. You must identify the activities, control flows, and object flows

that occur between the activities.

3. You should identify any decisions that are part of the process being

modeled.

4. You should attempt to identify any prospects for parallelism in the

process.

5. You should draw the activity diagram.

Major Steps in Creating an Activity Diagram

1. Choose a business process

2. Identify activities

3. Identify control flows & nodes

4. Identify object flows & nodes

5. Lay out & draw diagram

Your turn: Create an Activity Diagram for

Borrow Books (Use Case) 

The borrowing activities are built around checking books out and returning books by

borrowers. There are three types of borrowers: students, faculty or staff, and guests.

Regardless of the type of borrower, the borrower must have a valid ID card. If the

borrower is a student, having the system check with the registrar‘s student database

validates the ID card. If the borrower is a faculty or staff members, having the system

check with the personnel office‘s employee database validates the ID card. If the

borrower is a guest, the ID card is checked against the library‘s own borrower

database. If the ID card is valid, the system must also check to determine whether the

borrower has any overdue books or unpaid fines. If the ID card is invalid, the borrower

has overdue books, or the borrower has unpaid fines, the system must reject the

borrower‘s request to check out a book, otherwise the borrower‘s request should be

honored.

1 . 3
U S E C A S E S &

U S E - C A S E
D E S C R I P T I O N S

Introduction

• Use cases are the primary drivers for all the UML diagramming

techniques. A use case communicates at a high level what the

(Computer-based Information) system needs to do, and all the UML

diagramming techniques build on this by presenting the use –case

functionality in a different way for a different purpose.

• Use cases are the building blocks by which the system is designed

and built.

Introduction

• Use-case diagrams provide a bird’s-eye view of the basic

functionality of the business processes contained in the evolving

system.

• Activity diagrams open up the black box of each business process

by providing a more-detailed graphical view of the underlying

activities that support each business process.

Use-Case Descriptions

• provide a means to more fully document the different aspects of each

individual use case.

• are based on the identified requirements, use-case diagram and the

activity diagram.

• contain all the information needed to document the functionality of

the business processes.

As to which should come first—use case descriptions or use case diagram—technically

speaking, it really does not matter. Both should be done to fully describe the

requirements that the information system must meet.

Use Cases

• Use cases capture the typical interaction of the system with the

system‘s users (end users and other systems).

• These interactions represent the external or functional view of the

system from the perspective of the user.

• Each use case describes one and only one function in which users

interact with the system, although a use case may contain several

―paths‖ that a user can take while interacting with the system (e.g.,

when searching for a book in Web bookstore, the user might search by

subject, by author, or by title).

• Each path through the use case is referred to as a scenario.

How Are Use Cases and Use-Case

Description Created?

• Project team must work closely with the users to fully document the

functional requirements.

• Organizing the functional requirements and documenting them in a

use-case description are a relatively simple process, but it takes

considerable practice to ensure that the description are complete

enough to use in the next structural and behavioral modeling.

• The best place to begin is to review the use-case and activity diagrams.

• The key thing to remember is that each use case is associated with one

and only one role that users have in the system

Types of Use Cases

1. Overview versus detail

2. Essential versus real

Overview versus Detail Use Case

• Used to enable the analyst and user to agree on a high-level overview of the

requirements.

• Typically, they are created very early in the process of understanding the

system requirements, and they only document basic information about the

use case such as its name, ID number, primary actor, type, and a brief

description.

• Once the user and the analyst agree upon a high-level overview of the

requirements, the overview use cases can be converted to detail use cases.

• A detail use case typically documents, as far as possible, all of the

information needed for the use case.

Essential versus Real Use Case

• An esssential use case only describes the minimum essential issues

necessary to understand the required functionality.

• A real use case will go further and describe a specific set of steps.

• For example, an essential use case in a dentist office might say that

the receptionist should attempt to “Match the Patient’s desired

appointment times with the available times,” while a real use case

might say that the receptionist should ―Look up the available dates

on the calendar using MS Exchange to determine if the requested

appointment times were available.”

Essential versus Real Use Case

• The primary difference is that essential use cases are implementation

independent, while real use cases are detailed descriptions of how to

use the system once it is implemented.

• As such, real use cases tend to be used only in detailed design,

implementation, and testing.

Elements of a Use-case Description

There are three basic parts to a use case description:

1. overview information,

2. relationships, and

3. the flow of events

Overview & Relationships (example)

Overview & Relationships (example)

Overview

&

Relations

hips

(example)

Guideline for creating Use-case

Descriptions

1. Choose a Use Case

2. Create Overview Description

3. Describe to Normal Flow of Events

4. Check the Normal Flow of Events

5. Identify Alternative or Exceptional Flows

6. Review the Use-Case Description

7. Repeat Until Done

Guideline for creating Use-case

Descriptions

1. Write each step in ―SVDPI‖ form (subject-verb-direct object, and optionally,

preposition-indirect object)

2. Clarify initiator and receivers of action

3. Write from independent observer perspective

4. Write at same level of abstraction

5. Ensure a sensible set of steps

6. Apply KISS principle liberally

7. Write repeating instructions after the set of steps to be repeated

1 These guidelines are based on Cockburn, Writing Effective Use Cases and Graham,

Migrating to Object Technology

Your Turn 

How would you make requirements gathering (interviews,

questionnaires, observation, and document analysis) more

effective by knowing that eventually you will be creating use-

case descriptions and diagrams?

1 . 4
V E R I F Y I N G &

V A L I D A T I N G T H E
B U S I N E S S

P R O C E S S E S A N D
F U N C T I O N A L

M O D E L S

Introduction

• Before move on to the next modeling, i.e., structural and behavioral modeling, we

need to verify and validate the current set of functional models to ensure that they

faithfully represent business processes under consideration.

• This includes testing the fidelity of each model; i.e., we must ensure that the activity

diagram(s), use-case descriptions, and use case diagram, all describe the same

functional requirements.

• Before we describe the specific tests, we describe walkthroughs, a manual approach

that supports verifying and validating the evolving models.

Walkthroughs

• Essentially a peer review of a product.

• Typically completed by a team whose members come from the development team

and the client.

• The purpose is to thoroughly test the fidelity and to ensure that the models are

consistent  uncover errors or faults in the evolving specification

• However, a walkthrough does not correct errors-it simply identifies them.

• Error correction is to be accomplished by the team after the walkthrough is

completed

Walkthroughs

• Specified roles of the walkthrough team:

1. Presenter role

2. Recorder/scribe

3. Maintenance oracle

4. Organizer (calling, setting up, and running the walkthrough meetings)

Potential Danger of Walkthroughs

• When management decides the results of uncovering errors in the

representation are a reflection of an analyst’s capability.

• This must be avoided at all costs.

• Depending on the organization, it may be necessary to omit

management from the walkthrough process.

Functional Model Verification & Validation

(step 1-7)

1. When comparing an activity diagram to a use case description, there should be

at least one event recorded in the normal flow of events, sub-flows, or

alternative/exceptional flows of the use-case description for each activity or action

that is included on an activity diagram, and each event should be associated with

an activity or action

2. All objects portrayed as an object node in an activity must be mentioned in an

event in the normal flow of events, sub-flows, or alternative/exceptional flows of

the use-case description.

3. Sequential order of the events in a use-case description should occur in the

same sequential order of the activities contained in an activity diagram

4. When comparing a use-case description to a use-case diagram, there must be

one and only one use-case description for each use case, and vice versa

5. All actors listed in a use-case description must be portrayed on the use-case

diagram

6. In some organizations, we should also include the stakeholders listed in the

use-case description as actors in the use-case diagram.

7. All other relationships listed in a use-case description (include, extend, and

generalization) must be portrayed on a use-case diagram.

Functional Model Verification & Validation

(step 1-7)

Revised

Use Case

Diagram

1 . 4
U S E C A S E S &

P R O J E C T
M A N A G E M E N T
(A D D I T I O N A L)

• Use-case model can drive entire development effort.

• Project manager or system analyst uses business requirements use

cases to estimate and schedule the build cycles of the project.

– Build cycles are scoped on the basis of the importance of the use

case and the time it takes to implement the use case.

• To determine importance of use cases, system analyst can create:

– Use-case ranking and evaluation matrix

– Use-case dependency diagram

Use Cases and Project Management

• In most projects, the most important use cases are developed
first.

• Use-case ranking and priority matrix – a tool used to evaluate
use cases and determine their priority.

• Evaluates use cases on 1-5 scale against six criteria.

1. Significant impact on the architectural design.

2. Easy to implement but contains significant functionality.

3. Includes risky, time-critical, or complex functions.

4. Involves significant research or new or risky technology.

5. Includes primary business functions.

6. Will increase revenue or decrease costs.

Use-Case Ranking and Priority Matrix

Sample Use-Case Ranking and Priority Matrix

• Activity Diagrams

– Understand the rules and style guidelines for activity diagrams

– Activity diagrams can be used to represent (To-Be) Business Process Model of

the IS

• Use cases (Use-case diagram and use-case descriptions)

– Understand the rules and style guidelines for use cases (use-case diagram and

use-case descriptions)

– Understand the process used to create use cases (use-case diagram and use-

case descriptions)

Summary

• Create, Verify & Validate the functional models of (To-Be) IS using

Use Cases via activity diagrams, use-case diagram and use-case

descriptions

• (Additional) Use Case Ranking and Prioritization Matrix for Project

Management (Estimate)

Summary

• Systems Analysis and Design: An Object Oriented Approach with

UML 5th ed. Alan Dennis, Barbara Haley Wixom, and Roberta M.

Roth © 2015

• http://dilbert.com/strip/2000-02-27

References

