FAKULTAS

[LMU
KOMPUTER

J‘

Foundations of Prdgrammlng 2:

Inheritance and Polymorphism

FoP 2 Teaching Team, Faculty of Computer Science, Universitas Indonesia
Correspondence: Fariz Darari (fariz@cs.ui.ac.id)

- .I free to&e and sh *4 his work: @ @@@
the m ilre the mﬁre we'have! BY NC SA

Why?

Try this one, create the classes of
(incl. constructors, setters, getters, and appropriate methods):

- Cat with four fields:
name, age, can_fly, is heterochromia

- Dog with three fields:
name, age, can_fly

- Bird with four fields:
name, age, can_fly, colors

Why?

Try this one, create the classes of
(incl. constructors, setters, getters, and appropriate methods):

- Cat with four fields:
name, age, can_fly, is heterochromia

- Dog with three fields:

name, age, can_fly What can you observe?

- Bird with four fields:
name, age, can_fly, colors

Inheritance

Animal

Inheritance

Animal

Which fields go to superclass and which to subclasses?

Inheritance: Animal.java

public class Animal {

private String name;
private int age;
private boolean can_fly;

public Animal(String name, int age, boolean can fly) {
this.name = name;
this.age = age;
this.can_fly = can_fly;

14 oo

Inheritance: Animal.java
/] ...

public void setName(String newName) {
this.name = newName;

¥

public String getName() {
return this.name;

¥

public void getOlder() {
this.age++;

¥

public int getAge() {
return this.age;

¥
1 ooc

Inheritance: Animal.java

/] ...
public boolean canFly() {

return can_fly;

¥

public String toString() {
return this.getName() + ", "

+ this.getAge() + ", "

+ this.canFly();

Inheritance: Cat.java

public class Cat extends Animal {

private boolean is heterochromia;

public Cat(String name, int age, boolean
is _heterochromia) {

super(name, age, false);
this.is heterochromia = is _heterochromia;

/] ...

Inheritance: Cat.java

public class Cat extends Animal { // Subclass extends Superclass
private boolean is_heterochromia;

public Cat(String name, int age, boolean
is _heterochromia) {
super(name, age, false);
this.is heterochromia = is _heterochromia;

/] ...

A subclass is a new class that extends an existing class; that is,
it has the attributes and methods of the existing class, plus more.

Inheritance: Cat.java

public class Cat extends Animal {
private boolean is heterochromia;

public Cat(String name, int age, boolean
is _heterochromia) {
super(name, age, false);
this.is heterochromia = is _heterochromia;

/] ...

super refers to the superclass of the current class; when super is
used like a method, it invokes the constructor of the superclass

Inheritance: Cat.java

/] ...
public boolean is heterochromia() {
return 1s heterochromia;
}
public String toString() {
return super.toString() + ", " + is_heterochromia();
}
}

super can also be used to access the methods of the superclass

Inheritance: Dog.java

public class Dog extends Animal {

public Dog(String name, int age) {
super(name, age, false);

}

Inheritance: Dog.java

public class Dog extends Animal {

public Dog(String name, int age) {
super(name, age, false);

}

super refers to the superclass of the current class; when super is
used like a method, it invokes the constructor of the superclass

Inheritance: Dog.java

public class Dog extends Animal {

public Dog(String name, int age) {
super(name, age, false);

}

public String toString() {
return "Guk, guk!";

}

A subclass can override the methods of its superclass

Quiz time: Inheritance - Bird.java

Quiz time: Inheritance - Bird.java

public class Bird extends Animal {
private ArraylList<String> colors;

public Bird(String name, int age, ArraylList<String> colors) {
super(name, age, true);
this.colors = colors;

¥

public ArrayList<String> getColors() {
return colors;

¥

public String toString() {
return super.toString() + ", " + this.getColors();

¥

I:‘

Quiz time: Inheritance - Crow.java

* The class must extend the Bird class.
* It's only of 1 color, that is, black.

»Z’:‘

Quiz time: Inheritance - Crow.java

public class Crow extends Bird {

public Crow(String name, int age) {
super(name, age, new ArraylList<String>(Arrays.asList(new
String[]{"Black"})));

¥

Inheritance Types

B
B B llclfo_

Single Inheritance Hierarchical Inheritance
Multilevel Inheritance

More on super

* super() as a method must be the first statement in the constructor
* Even if there is no super(), it's actually called automatically

public class A {} public class A {}
public class B extends A { public class B extends A {
public B() { public B() {
// some statements — super();
} // some statements
} }

¥

Quiz time: super trap, what goes wrong?

public class Cockatoo extends Bird {

public Cockatoo() {}

Quiz time: Vehicle and subclasses, specitfy
what are the shared fields, and specific fields

Vehicle

Moloroyc le

ar ‘ Truck I

26

What we've learned so far..

e Superclass: more generic class
* Subclass: more specific class, that inherits from a more generic class
* In Java, a class can only have at most one superclass

 What is inherited from a superclass to its subclasses:
* Fields/attributes
* Methods

* We can add new fields/methods in a subclass

* We can also override methods occurring in a superclass

e Override: A method that is of the same signature (that is, same name and
parameters) as that of superclass, but is implemented differently

Quiz time: The use of + here, is it overriding,
or overloading?

System.out.println("1" + "1");
System.out.println(l + 1);

Quiz time: Can you make an example of
method overriding?

Quiz time: What is the root of all Java classes?

Polymorphism

Poly + morphism

* Poly = many
* Morphism = the state of having a specified shape/form

Hence, polymorphism:

The ability to assume different forms or shapes.

Recall the Animal examples, you can do this..

Crow crl = new Crow("Crowy", 1);
System.out.println(crl);

Bird crlAsBird = cril;

Animal crlAsAnimal = cril;

Recall the Animal examples, you can do this..

Crow crl = new Crow("Crowy", 1);
System.out.println(crl);

Bird crlAsBird = cril;

Animal crlAsAnimal = cril;

The object new Crow("Crowy", 1) has multiple forms:
Crow, Bird (Crow's superclass), Animal (Bird's superclass)

Recall the Animal examples, you can do this..

Crow crl = new Crow("Crowy", 1);
System.out.println(crl);

Bird crlAsBird = cril;

Animal crlAsAnimal = cril;

The object new Crow("Crowy", 1) has multiple forms:
Crow, Bird (Crow's superclass), Animal (Bird's superclass)

Upcasting = Going from more specific to more general

Upcasting makes method call more simple..

.. because now instead of making a method
for every class..

why not to make just one method for
the superclass!

Downcasting (oops!)

Crow crl = new Crow("Crowy", 1);
System.out.println(crl);

Bird crlAsBird = cril;

Animal crlAsAnimal = cril;

Crow cr2 = crlAsAnimal;

Downcasting

Crow crl = new Crow("Crowy", 1);
System.out.println(crl);

Bird crlAsBird = cril;

Animal crlAsAnimal = cril;

Crow cr2 = (Crow) crlAsAnimal;

Downcasting, however..

Crow crl = new Crow("Crowy",
System.out.println(crl);
Bird crlAsBird = cril;

Animal crlAsAnimal = cril;
Cat cr2 = (Cat) crlAsAnimal;

Downcasting with instanceof

Crow crl = new Crow("Crowy", 1);

System.out.println(crl);

Bird crlAsBird = cril;

Animal crlAsAnimal = cril;

if(crlAsAnimal instanceof Crow) {
Crow cr2 = (Crow) crlAsAnimal;

System.out.println(cr2);

Calling appropriate methods

Object d2 = new Dog("Helly", 3);

Object a3 = new Animal("Roar", 2, false);
System.out.println(d2);
System.out.println(a3);

Calling appropriate methods

Object d2
Object a3

new Dog("Helly", 3);
new Animal("Roar", 2, false);

System.out.println(d2);
System.out.println(a3);

Printing:
Guk, guk!
Roar, 2, false

Why upcasting? (continuation from prev examples)

ArraylList<Animal> animallList = new ArraylList<Animal>();
animallList.add(al); // animal
animallList.add(cl); // cat
animallList.add(dl); // dog
animallList.add(b1l); // bird
animallList.add(crl); // crow
System.out.println("Animals:");
for(Animal an:animallist)
System.out.println(an);

Quiz time: EthnicGroup

Create the class of EthnicGroup with the method goodMorning, printing out
"Good morning!". The class has the following subclasses:

- JavaneseEthnicGroup, with the method goodMorning -> "Sugeng enjing!"

- SundaneseEthnicGroup, with the method goodMorning -> "Wilujeng enjing!"
- BatakneseEthnicGroup, with the method goodMorning -> "Horas!"

Then, create a main class that instantiates all the ethnic groups
(incl. the default group), where the instantiations call goodMorning().

What can you observe?

:

THANK

YOU

Inspired by:
https://docs.oracle.com/javase/tutorial/java/landl/subclasses.html
Liang. Introduction to Java Programming. Tenth Edition. Pearson 2015.
Think Java book by Allen Downey and Chris Mayfield.

Eck. Introduction to Programming Using Java. 2014.

