
AVR Timer/Counter Interrupt

M. Anwar Ma'sum, Bayu Anggorojati, Grafika Jati

Jenis Interrupt

Yang Dibahas di DDAK

- 1. External Interupt
- 2. Internal Interupt / Timer Interrupt

Timer / Counter?

Timer / Counter

- Sesuatu yang digunakan untuk mengukur interval waktu.
- Berupa register yang menyimpan nilai tergantung kapasitasnya (8 bit, 16 bit, dsb).
- Berjalan secara independen dan tidak sinkron dengan instruksi inti yang berjalan.
- Dapat digunakan untuk mengaktivasi interupt terhadap instruksi yang sedang berjalan.

Cara Kerja Timer

- Melakukan increment pada counter variable (counter register).
- Untuk melakukan increment counter register, timer harus mengakses clock source.
- Frekwensi dari clock source menentukan kecepatan dari pertambahan nilai counter register

Timer Interrupt?

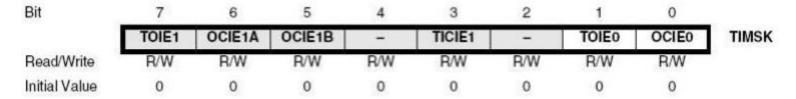
Timer Interrupt

- Interrupt yang diaktifkan oleh timer/counter.
- Ketika timer/counter mencapai kondisi tertentu maka interrupt akan aktif.
- Terdapat beberapa jenis:

Addr	Source	Definition
\$003	Timer1 Capt	Timer/Counter` Capture Event
\$004	Timer1 CompA	Timer/Counter1 Compare Match A
\$005	Timer1 CompB	Timer/Counter1 Compare Match B
\$ 006	Timer1 Ovf	Timer/Counter1 Overflow
\$007	Timero Ovf	Timer/Countero Overflow
\$00E	Timero Comp	Timer/Countero Compare

Timer Event

- Timer event adalah kejadian pada timer yang dapat diamati secara langsung dan menyebabkan terjadinya interrupt.
- Ada 3 jenis:
 - **1. Timer overflow**, kondisi saat nilai timer register maksimal dan berubah menjadi nol pada clock berikutnya (overflow).
 - **2. Compare match**, kondisi saat nilai dari sebuah timer register sama dengan nilai yang ada pada Output Compare Register (OCRx).
 - 3. Input capture, kondisi saat terjadi sinyal masukan (pada timer) yang membuat nilai timer akan disimpan pada Input Capture Reg


Timer Event Notification

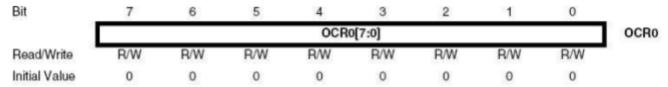
 Ketika terjadi timer event, akan dikirim notifikasi ke Timer Interrupt Flag Register (TIFR)

 TIFR nantinya akan digunakan untuk menandai terjadinya interrupt

Timer Counter Register

 Timer/Counter Interrupt Mask Register (TIMSK) → penentu jenis timer

 Timer/Counter Interrupt Flag Register (TIFR)→ penanda timer even


Bit	7	6	5	4	3	2	1	0	
	TOV1	OCF1A	OCF1B	-	ICF1	-	TOVo	OCF0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	RW	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Timer Counter Register Cont.

Timer/Counter Control Register (TCCRo /TCCR1A/B)
 → untuk mengatur kecepatan timer

Bit	7	6	5	4	3	2	1	0	
	FOC0	WGM00	COM01	COMOO	WGM01	CS02	CS01	CS00	TCCR0
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	5)
Initial Value	0	0	0	0	0	0	0	0	

Output Compare Register (OCR1A/B)

Input Capture Register (ICR1)

Bit	7	6	5	4	3	2	1	0	
				ICR1	[15:8]				ICR1
				ICR	[7:0]				ICR1L
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Timer Counter Register Cont.

- Timer/Counter Count Register (TCNTo/ TCNT1A/B) → berperan seperti jarum jam pada timer
 - TCNT pada timer o memiliki panjang 8 bit
 - TCNT pada timer 1 memiliki panjang 16 bit

Pengaturan TCCR

TCCRx			Synchronous Timer0 &	Synchronous/Asynchronous		
Bit 2	Bit 1	Bit 0	Timer1 P _{CK} = CK	Timer2 P _{CK2} = f (AS2)		
CSx2	CSx1	CSx0	Т _{СК0,1}	T _{CK2}		
0	0	0	0 (Timer Stopped)	0 (Timer Stopped)		
0	0	1	P _{CK} (System Clock)	P _{CK2} (System Clock/Asynchronous Clock)		
0	1	0	P _{CK} /8	Р _{СК2} /8		
0	1	1	P _{CK} /64	P _{CK2} /32		
1	0	0	P _c /256	P _{CK2} /64		
1	0	1	P _{CK} /1024	P _{CK2} /128		
1	1	0	External Pin Tx falling edge	P _{CK2} /256		
1	1	1	External Pin Tx rising edge	P _{CK2} /1024		

$$TOV_{CK} = \frac{f_{CK}}{MaxVal}$$

 TOV_{ck} = frekuensi timer overflow dalam satu detik f_{ck} = frekuensi clock (P_{ck}/N)

MaxVal = nilai maksimal TCNT ($2_{jumlah\ bit\ pada\ TCNT}$)

Contoh Soal

- Akan digunakan Timer/Counter Overflow o dengan pengaturan TCCR mengaktifkan CSo1. Jika frekuensi prosesor (Pck) adalah 3.69 MHz.:
 - 1. Berapakah banyak munculnya timer overflow dalam satu detik?
 - 2. Jika pada pengaturan TCCR diubah dengan mengaktifkan CSo1 dan CSoo, apa pengaruhnya pada timer/counter overflow interrupt?

Langkah Pengaktifan Timer/Counter Overflow Interrupt

- Tetapkan pengaturan
 TCCRo/TCCR1A/TCCR1B
- 2. Tetapkan pengaturan TIFR
- 3. Tetapkan pengaturan TIMSK
- 4. Berikan perintah SEI

Langkah Pengaktifan Timer/Counter Compare Interrupt

- Tetapkan pengaturan
 TCCRo/TCCR1A/TCCR1B
- 2. Tetapkan pengaturan TIFR
- 3. Tetapkan pengaturan TIMSK
- 4. Berikan nilai ke OCRo/OCR1A/OCR1B untuk nantinya dikomparasi dengan TCNT
- 5. Berikan perintah SEI

Latihan

Int_OV.asm : Timero overflow

Counter_Compare.asm : Timero compare

TOvComp.asm : Timero overflow & compare

T1_OV : Timer1 overflow

T1_COMP : Timer1 compare

T1_OVCOMP : Timer1 overflow & compare

OVCompExint : Overflow, Compare, ExtInt