
CSIM601251

Instructor: Tim Dosen DDAK

Slide By : Erdefi Rakun

Fasilkom UI

• Analysis Procedure

• Design Methods

• Gate-level (SSI) Design

• Block-Level Design

2Combinational Circuits

Note: Portion of these materials are taken from Aaron Tan’s slide and other portions of
this material © 2008 by Pearson Education,Inc

Combinational Circuits 3

• Given a combinational circuit, how do you analyze its
function?

▪ Steps:
1. Label the inputs and outputs.

A
B F1

F2

A+B

A'+B'

= (A+B).(A'+B')

= (A'+B')' = AB

2. Obtain the functions of
intermediate points and the outputs.

3. Draw the truth table.

4. Deduce the functionality of the circuit  Half adder.

A B (A+B) (A'+B') F1 F2

0 0 0 1 0 0

0 1 1 1 1 0

1 0 1 1 1 0

1 1 1 0 0 1

1. Specification
– Write a specification for the circuit if one is not already available

2. Formulation
– Derive a truth table or initial Boolean equations that define the required

relationships between the inputs and outputs, if not in the specification

– Apply hierarchical design if appropriate

3. Optimization
– Apply 2-level and multiple-level optimization

– Draw a logic diagram or provide a netlist for the resulting circuit using
ANDs, ORs, and inverters

4Combinational Circuits

4. Technology Mapping

– Map the logic diagram or netlist to the implementation
technology selected

5. Verification

– Verify the correctness of the final design manually or using
simulation

5Combinational Circuits

1. Specification
– BCD to Excess-3 code converter
– Transforms BCD code for the decimal digits

to Excess-3 code for the decimal digits
– BCD code words for digits 0 through 9: 4-bit

patterns 0000 to 1001, respectively
– Excess-3 code words for digits 0 through 9: 4-

bit patterns consisting of 3 (binary 0011)
added to each BCD code word

– Implementation:
• multiple-level circuit
• NAND gates (including inverters)

6Combinational Circuits

2. Formulation
– Conversion of 4-bit codes can be most easily

formulated by a truth table

– Variables
- BCD:
A,B,C,D

– Variables
- Excess-3
W,X,Y,Z

– Don’t Cares
- BCD 1010

to 1111

7Combinational Circuits

Input BCD
A B C D

Output Excess-3

WX Y Z
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

3. Optimization

a. 2-level using
K-maps

𝑊 = 𝐴 + 𝐵𝐶 + 𝐵𝐷

𝑋 = 𝐵𝐶 + 𝐵𝐷 + 𝐵𝐶.𝐷

𝑌 = 𝐶𝐷 + 𝐶.𝐷

𝑍 = 𝐷

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

X X X

X X

X

1

1

w

z y

x

8Combinational Circuits

3. Optimization (continued)
b. Multiple-level using transformations

𝑊 = 𝐴 + 𝐵𝐶 + 𝐵𝐷
𝑋 = 𝐵𝐶 + 𝐵𝐷 + 𝐵𝐶.𝐷

𝑌 = 𝐶𝐷 + 𝐶.𝐷
𝑍 = 𝐷 G = 7 + 10 + 6 + 0 = 23

– Perform extraction, finding factor:
𝑇1 = 𝐶 + 𝐷
𝑊 = 𝐴 + 𝐵𝑇1
𝑋 = 𝐵𝑇1 + 𝐵𝐶.𝐷
𝑌 = 𝐶𝐷 + 𝐶.𝐷
𝑍 = 𝐷 G = 2 + 4 + 7 + 6 + 0 = 19

9Combinational Circuits

3. Optimization (continued)
b. Multiple-level using transformations

𝑇1 = 𝐶 + 𝐷
𝑊 = 𝐴 + 𝐵𝑇1

𝑋 = 𝐵𝑇1 + 𝐵𝐶.𝐷
𝑌 = 𝐶𝐷 + 𝐶.𝐷

𝑍 = 𝐷 G = 19

– An additional extraction not shown in the text since it
uses a Boolean transformation: (𝐶.𝐷 = 𝐶 + 𝐷 = 𝑇1) :

𝑊 = 𝐴 + 𝐵𝑇1
𝑋 = 𝐵𝑇1 + 𝐵𝑇1
𝑌 = 𝐶𝐷 + 𝑇1
𝑍 = 𝐷 G = 2 + 4 + 6 + 4 + 0 = 16!

10Combinational Circuits

4. Mapping Procedures

– To NAND gates

– To NOR gates

– Mapping to multiple types of logic blocks is covered in the
reading supplement: Advanced Technology Mapping.

11Combinational Circuits

Combinational Circuits 12

Technology Mapping
Mapping with a library containing AND, OR, NOT

Combinational Circuits 13

Technology Mapping
Mapping with a library containing inverters and 2-input NAND

• Verification - show that the final circuit designed implements the
original specification

• Simple specifications are:

– truth tables

– Boolean equations

– HDL code

• If the above result from formulation and are not the original
specification, it is critical that the formulation process be flawless
for the verification to be valid!

14Combinational Circuits

• Manual Logic Analysis
– Find the truth table or Boolean equations for the final circuit

– Compare the final circuit truth table with the specified truth table, or

– Show that the Boolean equations for the final circuit are equal to the specified Boolean
equations

• Simulation
– Simulate the final circuit (or its netlist, possibly written as an HDL) and the specified

truth table, equations, or HDL description using test input values that fully validate
correctness.

– The obvious test for a combinational circuit is application of all possible “care” input
combinations from the specification

15Combinational Circuits

• BCD-to-Excess 3 Code Converter
– Find the SOP Boolean equations from the final circuit.

– Find the truth table from these equations

– Compare to the formulation truth table

• Finding the Boolean Equations:
T1 = C + D = C + D

W = A (T1 B) = A + B T1

X = (T1 B) (B) = T1 + B

Y = C + D = CD + D

CD

C

B C D

C D

16Combinational Circuits

• Find the circuit truth table from the equations and
compare to specification truth table:

The tables match!

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

17Combinational Circuits

Combinational Circuits 18

• Analysis Procedure

• Design Methods

• Gate-level (SSI) Design

• Block-Level Design

19Combinational Circuits

Note: Portion of these materials are taken from Aaron Tan’s slide and other portions of
this material © 2008 by Pearson Education,Inc

• To control the complexity of the function mapping inputs
to outputs:
– Decompose the function into smaller pieces called blocks

– Decompose each block’s function into smaller blocks, repeating as
necessary until all blocks are small enough

– Any block not decomposed is called a primitive block

– The collection of all blocks including the decomposed ones is a
hierarchy

• Example: 9-input parity tree (see next slide)
– Top Level: 9 inputs, one output

– 2nd Level: Four 3-bit odd parity trees in two levels

– 3rd Level: Two 2-bit exclusive-OR functions

– Primitives: Four 2-input NAND gates

– Design requires 4 X 2 X 4 = 32 2-input NAND gates

20Combinational Circuits

BO

X0
X1
X2
X3
X4
X5
X6
X7
X8

Z O

9-Input

odd

function

(a) Symbol for circuit

3-Input

odd

function

A 0

A 1

A 2

BO

3-Input

odd

function

A 0

A 1

A 2

BO

3-Input

odd

function

A 0

A 1

A 2

BO

3-Input

odd

function

A 0

A 1

A 2

X0

X1

X2

X3

X4

X5

X6

X7

X8

Z O

(b) Circuit as interconnected 3-input odd

function blocks

BO

A 0

A 1

A 2

(c) 3-input odd function circuit as

interconnected exclusive-OR

blocks

(d) Exclusive-OR block as interconnected

NANDs
21Combinational Circuits

• Whenever possible, we try to
decompose a complex design into
common, reusable function blocks

• These blocks are

– verified and well-documented

– placed in libraries for future use

22Combinational Circuits

• A top-down design proceeds from an abstract, high-
level specification to a more and more detailed
design by decomposition and successive refinement

• A bottom-up design starts with detailed primitive
blocks and combines them into larger and more
complex functional blocks

• Design usually proceeds top-down to known
building blocks ranging from complete CPUs to
primitive logic gates or electronic components.

• Much of the material in this chapter is devoted to
learning about combinational blocks used in top-
down design.

23Combinational Circuits

Combinational Circuits 24

• Design procedure:

1. State problem
Example: Build a Half Adder.

2. Determine and label the inputs and outputs of circuit.
Example: Two inputs and two outputs labelled, as shown below.

Half
Adder

X

Y

S

C

(X + Y)

3. Draw the truth table.

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Combinational Circuits 25

4. Obtain simplified Boolean functions.
Example: C = XY

S = X'Y + XY' = XY

5. Draw logic diagram.

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

X
Y

S

C

Half Adder

Combinational Circuits 26

• Half adder adds up only two bits.

• To add two binary numbers, we need to add 3 bits
(including the carry).
– Example:

1 1 1 carry

0 0 1 1 X

+ 0 1 1 1 Y

1 0 1 0 S

◼ Need Full Adder (so called as it can be made from two
half adders).

Full
Adder

X

Y

Z

S

C

(X + Y + Z)

Combinational Circuits 27

• Truth table:

◼ Using K-map, simplified SOP form:
C = ?
S = ?

Note:
Z - carry in (to the current position)

C - carry out (to the next position)

0

1

00 01 11 10
X

YZ

111

1

C

0

1

00 01 11 10
X

YZ

11

11

S

X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Combinational Circuits 28

• Alternative formulae using algebraic manipulation:
C = XY + XZ + YZ

= XY + (X + Y)Z

= XY + ((XY) + XY) Z

= XY + (XY) Z + XY Z
= XY + XY Z + (XY) Z
= XY + (XY)Z

S = X'Y'Z + X'YZ' + XY'Z' + XYZ
= X'(Y'Z + YZ') + X(Y'Z' + YZ)
= X'(YZ) + X(YZ)'
= X(YZ)

Combinational Circuits 29

• Circuit for above formulae:
C= XY + (XY)Z

S = X(YZ)

Full Adder made from two Half-Adders (+ an OR gate).

(XY)X
Y S

C

Z

(XY)

29

Combinational Circuits 30

• Circuit for above formulae:
C= XY + (XY)Z

S = X(YZ)

Full Adder made from two Half-Adders (+ an OR gate).

(XY)X
Y S

C

Z

(XY)

Half
Adder

Half
Adder

X
Y

X
Y

Sum

Carry

Sum

Carry

Block diagrams.

Combinational Circuits 31

• More complex circuits can also be built using block-level
method.

• In general, block-level design method (as opposed to
gate-level design) relies on algorithms or formulae of the
circuit, which are obtained by decomposing the main
problem to sub-problems recursively (until small
enough to be directly solved by blocks of circuits).

• Simple examples using 4-bit parallel adder as building
blocks for 16-bit Parallel Adder

Combinational Circuits 32

• Consider a circuit to add two 4-bit numbers together and
a carry-in, to produce a 5-bit result.

4-bit
Parallel Adder

C5 C1

X2 X1 Y4 Y3

S4 S3 S2 S1

Y2 Y1X4 X3

Black-box view of 4-bit
parallel adder

◼ 5-bit result is sufficient because the largest result is:
11112 + 11112 + 12 = 111112

Combinational Circuits 33

• SSI design technique should not be used here.

• Truth table for 9 inputs is too big: 29 = 512 rows!

◼ Simplification becomes too complicated.

X4X3X2X1 Y4Y3Y2Y1 C1 C5 S4S3S2S1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 1

… … … … …

0 1 0 1 1 1 0 1 1 1 0 0 1 1

… … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Combinational Circuits 34

• Alternative design possible.

• Addition formula for each pair of bits (with carry in),
Ci+1Si = Xi + Yi + Ci

has the same function as a full adder:
Ci+1 = Xi Yi + (Xi Yi)Ci

Si = Xi  Yi  Ci

35Combinational Circuits

• Cascading 4 full adders via their carries, we get:

C1

Y1 X1

S1

FA

C2

C5

Y2 X2

S2

FA

C3

Y3 X3

S3

FA

C4

Y4 X4

S4

FA

Output

Input

Combinational Circuits

Combinational Circuits 36

• Note that carry propagated by cascading the
carry from one full adder to the next.

• Called Parallel Adder because inputs are
presented simultaneously (in parallel). Also
called Ripple-Carry Adder.

Combinational Circuits 37

• Larger parallel adders can be built from smaller ones.

• Example: A 16-bit parallel adder can be constructed from
four 4-bit parallel adders:

4-bit //
adder

X4..X1 Y4..Y1

C1

S4..S1

4-bit //
adder

X8..X5 Y8..Y5

C5

S8..S5

4-bit //
adder

X12..X9 Y12..Y9

C9

S12..S9

4-bit //
adder

X16..X13 Y16..Y13

C13

S16..S13

C17

4444

444 4444 4

A 16-bit parallel adder 4

S4..S1 S4S3S2S1

=

