
CHAPTER 3

Cf,IOOSING AN APPROPRIATE STATISTICAL TEST

'When 
alternative statistical tests are available for a given research

design, eB is very often the case, it is necessary to employ some rationale
for choosing among them. In Chap. 2 'we presented one criterion to use
in choosing among alternative statistical tests:'the criterion of power.
In this chapter other criteria will be presented.

The reader will remember that the power of a statistical analysis is
partly a function of the statistical test employed in the analysis. A
statistical test is a good one if it has a small probability of rejecting llo
when Ilo is true, but a large probability of rejecting Ilo when .I/o is false.
Suppose we find two statistical tests, ,4 and B, which have the same
probability of rejecting IIs when it is true. It might seem that we should
simply select the one that has the larger probability of rejecting l/o when
it is false.

However, there are considerations other than power which enter into
the ehoice of a statistical test. In this choice we must consider thd
.m&nner in which the sample of scores was drawn, the nature of the pop-
ulation from which the sample was drawn, and the kind of measurement
or scaling which was employed in the operational definitions of the var-
iables involved, i.e., in the scores. AII these matters enter into determin-
ing which statistical test is optimum or most appropriate for analyzing a
particular set of research data.

TIIE STATISTICAL MODEL

When we have asserted the nature of the population and the manner
of sampling, we have established a statistical model. Associated with
every statistical test is a model and a measurement. requirementl the
test is valid under certain conditions, and the model and the measure-
ment requirement specify those conditions. Sometimes we are able to
test whether the conditions of a particular statistical model are met, but
more often we have to assume that they are met. Thus the conditions
of the statistical model of a test are often called the "assumptions" of
the teet. All decisions arrived at by the use of a,ny stat'istical test must
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tny with them this qualification: "If the model used was correct, and
the measurement requirement was satisfied, then : . ."
It is obvious that the fewer or weaker are the assumptions that define
particular model, the less qualifying we need to do about our decision

rrived at by the statistical test associated with that model. That is,
he fewer or weaker are the assumptions, the more general are the
onclusions.

However, the most powerful tests are those which have the strongest
r most extensive assumptions. The parametric tests, for example, the
or F' tests, have a variety of .strong assumptions underlying their use.
irhen those assumptions are valid, these tests are the most likely of all
:sts to reject I1s when 110 is false. That is, rvhen research data may
ppropriately be analyzed by a parametric test, that test will be more
owerful than any other in rejecting 110 r,vhen it is false. Notice, horv-
ver, the requirement that the research data must be appropriate for the
est. What constitutes such appropriateness? What are the condi-
ions that are associated with the statist,ical model and the measurement
equirement underlying, say, the I test? The conditions rvhich must be
atisfied to make the t test the most porverful one, and in fact before any
:onfidence can be placed in any probability statement obtained by the
rse of the d test, are at least these:

1. The observations must be indcpendent. That is, the selection of
any one sase from the population for inclusion in the sample must not
bias the chances of any other case for inclusion, and the score which is
assigned to any case must not bias the score rvhich is assigned to any
other case.

2. The observations must be drawn from normally distributed pop-
ulations.

3. These populations must have the same variance (or, in special cases,
they must have a known ratio of variances).

4. The variables involved must have been measured in at least an
interval scale, so that it is possible to use the operations of arithmetic
(adding, dividing, finding means, etc.) on the scores.

In the case of the analysis of variance (the 1I test), another condition
is added to those already given:

5. The means of these normal and homoscedastic populations must
be linear combinations of effects due to columns and/or rows. That is,
the effects must be additive.

All the above conditions [except (4), which states the measurement
requirementl are elements of the parametric statistical model. With the
possible exception of the assumption of homoscedasticity (equal var-
iances) these conditions are ordinarily not tested in the course of the
performance of a statistical analysis. Rather, they are presumptions



20 cHoogrNc AN APPR'oPRTATE srATrslrrcarJ TEsr

which are accepted, and their truth or falsity determines the meaning-

fulness of the probability statement arrived at by the parametric

test.
When we have reason to believe that these conditions are met in the

data under analysis, then we should certainly choose a parametric stati+.

tical test, such as t or F, for analyzing those data. Such a choice is

optimum because the parametric test rvill be most powerful for rejecting

110 when it should be rejected'
But what if these conditions are not met? What happens when the

population is rzol normally distributed? lVhat happens when the meas'

urement is nol so strong as an interval scale? What happens when the
populations are not equal in variance?

When the assumptions eorrstituting the statistical modcl for a test

are in fact not met, or when the measurement is not of the required

strength, then it is difficult if not impossible to say what is really the
power of the test. It is even di{ficult to estimate the extent to which a
probability statement about the hypothesis in question is meaningful

when that probability statement results frorn the unacceptable applica-

tion of a test. Although some empirical evidence has been gathered to

slrow that sli.ght deviations in meeting the assumptions underlying para-

metric tests may not have radical effects on the obtained probability

figure, there is as yeb no general agreenent as to rvhat constitutes a

"slight" deviation.

POWER-EFFICIENCY

We have already noticed that the fe'lver orrveaker are the assurnptions

that constitute a particular model, the more general are the conclusions
tlerived from the application of the statistical test associated u'ith that
model but the less porverful is the test of I/0. This assertion is generally

true for any given sample size. But it may not be true in the comparison

of two statistical tests which are applied to two samples of 
'unequal size.

That is, if l[ : 30 in both instances, test ,4 may be more powerful than

test B. But the same test B may be more porverful with I[ : 30 than ig

test /. with N : 20. In other words, n'e can avoid the dilemma of hav-
ing to choose between power and generality by selecting a statistical test
which has broad generality and then increasing its power to that of the
most porverful test available by enlarging the size of the sample.

The corrcept of. power-fficiency is concerned with the amount of itlcrease
in sample size which is necessary to make test B as porverful as test./-.
If test r{ is the most powerful known test of its type (when used with

data which meet its conditions), and if test B is another test for the same
research design which is just as powerful with ND cases as is test 4 with
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.lfo cases, then

Power-efficiency of test B : (100) $ O., 
".n,-  lYa  -

For example, if test B requires a sample of N : 25 cases to have the same
power as test ,4. has with N : 20 cases, then test B has power-efficiency
of (100)?9 per cent, i.e., its power-efficiency is 80 per cent. A porver-
efficiency of 80 per cent means that in order to equate the power of test ,4.
and test B (when all the conditions of both tests are met, and when test .24.
is the more powerful) we need to draw 10 cases for test B for every 8 cases
drarvn for test ,4.

Thus rve can avoid having to meet some of the assumptions of the most
powerful tests, the parametric tests, without losing power by simply
choosing a different test and drawing a larger N. In other words, by
choosing another statistical test with fewer assumptions in its model and
thus rvith greater gerrerality than the t and F tests, and by enlarging our
N, we can avoid having to make assumptions 2, B, and b above, and still
retain equivalent porver to reject I1o.

Two other conditions, 1 and 4 above, underlie parametric statistical
bests. Assumption 1, that the scores are independently drawn from the
population, is an assumption which underlies all statistical tests, paramet-
ric. or nonparametric. But assumption 4, which concerns the strength
of measurement required for parametric tests-measurement must be
at least in an interval scale-is not shared by all statistical tests. Differ-
ent tests require measurement of difrerent strengths. In order to under-
stand the measurement requirements of the various statistical tests, the
reader should be conversant with some of the basic notions in the theory
of measurement. The discussion of measurement which occupies the
next few pages gives the required information.

MEASUREMENT
'When 

a physical scientist talks about measurement, he usually lneans
the assigning of numbers to observations in such a way that the numbers
are amenable to analysis by manipulation or operation according to cer-
tain rules. This analysis by manipulation will reveal ner.v information
about the objects being measured. In other words, the relation between
the things being observed and the numbers assigned to the observations
is so direct that by manipulating the numbers the physicar scie'tist
obtains nerv information about the things. For example, he may deter-
mine how much a homogeneous mass of material would rveigh if cut in
half by simply dividing its weight by 2.

The social scientist, taking physics as his model, usually attenrpts to
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do likewise in his scoring or measurement of social variables. But in

his scaling the social scientist very often overloobs a fundamental fact

in measurement theory. He overlooks the fact that in order for him to

be able to make certain operations with numbers that have been assigned

to observations, the structure of his method of mapping numbers (assigning

scores) to observations must be isom,orphic to some numerieal structure

which includes these operations. If two systems are isomorphic, their

structures are the same in the relations and operations they allow.

For example, if a researcher collects data made up of numerical scores

and then manipulates these scores by, say, adding and dividing (which

&re necessary operations in finding means and standard deviations), he

is assuming that the structure of his measurement is isomorphic to that

numerical structure known as arithmetic. That is, he is assuming that

he has attained a high level of measurement.
The theory of measurement consists of a set of separate or distinct

theories, each concerning a.distinct leuel of measurement. The operations

allowable on a given set of scores are dependent on the level of measure-

ment achieved. Here we will discuss four levels of measurement-

nominal, ordinal, interval, and ratio-and will discuss the operations ind

thus the statistics and statistical tests that are permitted with each level.

The Nominal or Classificatory Scale

Definition. Measurement at its weakest level exists when numbers

or other symbols are used simply to classify an object, person' or char-

acteristic. When numbels or other symbols are used to identify the
groups to which various objects belong, these numbers or symbols con-

stitute a nominal or classificatory scale'
Examples. The psychiatric system of diagnostic groups constitutes

a nominal scale. When a diagnostician identifies a person as "schiz-
ophrenic," "paranoid,t' "manic-depressive,t' or "psychoneurotic," he is

using a symbol to represent the class of persons to which this person

belongs, and thus he is using nominal scaling.
The numbers on automobile license plates constitute a nominal scale.

If the assignment of plate numbers is purely arbitrary, then each plated

car is a member of a unique subclass. But if, as is common in the United

States, a certain number or letter on the license plate indicates the county

in which the car owner resides, then each subclass in the nomi4al scale

consists of a group of entities: all owners residing inthe same county.

Here the assignment of numbers must be such that the same number (or

letter) is given to all persons residing in the same county and that difrer-

ent numbers (or letters) are given to people residing in different counties.

That is, the number or letter on the license plate must clearly indicate to

whioh of a set of mutually exclusive subclasses the owner belongs.
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Numbers on football jerseys and social-security numbers are other
examples of the use of numbers in nominal scaling.

Formal properties. All scales have certain formal properties. These
properties provide fairly exact definitions of the scale's characteristics,
more exact definitions than rve can give in verbal terms. These proper-
ties may be formulated more abstractly than rve have done here by a set
of axioms which specify the operations of scaling and the relations among
the objects that have been scaled.

fn a nominal scale, the scaling'operation is partitioning a given class
into a sbt of mutually exclusive subclasses. The only relation involved
is that of equiualence. That is, the members of any one subclass must be
equivalent in the property being scaled. This relation is symbolized by
the familiar sign: :. The equivalence relation is reflexive, symmetrical,
and transitive.l

Admissible operations. Since in any nominal scale the classification
may be equally well represented by any set of symbols, the nominal scale
is said to be "unique up to a one-to-one transformation." The symbols
designating the various subclasses in the scale may be interchanged, if
this is done consistently and completely. l,'or example, tvhen nerv licensc
plates are issued, the license number rvhich formerly stood for one count,y
can be interchanged rvith that which had stood for another counly.
Nominal scaling rvould be preserved if this ehange-over were perfomrr:d
consistently and thoroughly in the issuing of all license plates. Such
one-to-one transformations are sometimes called "the symmetric group
of transformations."

Since the symbols which designate the various groups on a nominal
scale may be interchanged without altering the essential information in
the scale, the only kinds of admissible descriptive statistics are those
"which would be unchanged by such a transformation: the mode, frequency
counts, etc. Under certain conditions, we can test hypotheses regarding
the distribution of cases among categories by using the nonparametric
statistical Lest, y2, or by using a test based on the binomial expansion.
These tests are appropriate for nominal data because they focus on fre-
quencies in categories, i.e., on enumerative data. The most common
measure of association for nominal data is the contingency coefficient, C,
a nonparanletric statistic.

The Ordinal or Ranking Scale

Definition. It may happen that the objects in one categoryof a scale
are not just different from the objects in other categories of that scale,

I Reflerite: r : .r for all values of c. Sym'metrical: if. fr : y, then y : a. Transitiue:
i L x : U a n d y : z , t h e r l . r : z .
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but that they stand in some kind of relation to them. Typical relations

among classes are: higher, more preferred, more difficult, more disturbed,

more-mature, etc. Such relations mey be designated by the carat ())

which, in general, me&ns "greater than." In reference to particular

scales, ) may be used to designate is prefeffeil to, is higher than, is rnore

itifi.cult than, etc. Its specific meaning depends on the nature of the rela-

tion that defines the scale.
Given a group of equivalence classes (i.e., given a nominal scale), if

the relation ) holds bet\veen some but not all pairs of classes, we have
. a partially ordered scale. If the relation ) holds for all pairs of classes so

that a complete rank ordering of classes arises, we have an ordinal scale.

Examples. Socioeconomic status, as conceived by 
'Warner 

and his

associates,r cortstitutes an ordinal scale. In prestige or social accept-

ability, all members of the upper middle class are higher than ( > ) all
'members 

of the lower middle class. The lower middles, in turn, are

higher than the upper lorvers. The : relation holds among members of

the same class, and the ) relation holds between any pair of classes.

The system of grades in the military services is another example of an

ordinal scale. Sergeant ) corporal ) private.
Many personality inventories and tests of ability or aptitude result in

scores which have the strength of ranks. Although the scores may

appear to be more precise than ranks, generally these scales do not meet

the requirements of any higher level of me&surement and may properly be

viewed as ordinal.
Formal properties. Axiomatically,thefundamentaldifferencebetween

a nominal and an ordinal scale is that the ordinal scale incorporates not

only the relation of equivalence (:) but also the relation "greater than"
(>). The latter relation is irreflexive, asymmetrical, and tra,nsitive.2

Admissible operations. Since any order-preserving transformation

does not change the information contained in an ordinal scale, .the scale
is said to be "unique up to a monotonic transformation." That is, it

does not matter what numbers we give to a pair of classes or to members

of those classes, just as long as we give a higher number to the members

of the class which is "greater" or "more preferred." (Of course, one

may use the lorver numbers for the "more preferred" grades. Thus we

usually refer to excellent performarrce as "first-class," and to progres-

sively inferior performances as "second-classtt and "third-class.tt So

Iong as we are consisteut, it does not matt'er whether higher or los'er num-

bers are used to denote t 'greatertt or "more preferred,")

r lVarner, W. L., Meeker, M., and Eells, K. 1949' Social class ht Atnerica' Nev

York: Science llesearch Associates.
'Irreflcxiue: it iB not true for any r lhat a ) a. Aeymmetricol: if r ) y' then

y > & Trcntiliuc: tl * ) yand y ) a,then- r ) z,
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For eiample, a corporal in the army wears trvo stripes on his'sleeve

and a sergeant rvears three. These insignia denote that sergeant ) cor'
poral. This relation rvould be equally rvell expressed if the corporal wore

four stripes and the sergeant wore seven. That is, a transformation

rvhich does not change the order of the classes is complctely admissible

because it does not inuolue any loss o! information. Any or all the numberg

applied to classes in an ordinal scale may be changed in any fashion which

does not alter the ordering (ranking) of the objects.
The statistic most appropriate for describing the central tendency of

scores in an ordinal scale is the median, since the median is not affected

by changes of any scores which are above or below it as long as the

nurnber of scores above and below remains the same. With ordinal

scaling, hypotheses can be tested by using that large group of nonpara-

metric statistical tests which are sometimes called "order statistics" or

"ranking statistics." Correlation coefficients based on rankings (e.g.,

the Spearman rs or the Kendall r) are appropriate.
The only assumption made by some ranking tests is that the scores we

observe are drarvn from an underlying continuous distribution. Para-

metric tests also make this assumption. An underlying continuous var-

iate is one that is not restricted to having only isolated valtles. It may

have any value in a certain interval. A discrete variate, on the other
hand, is one which can take on only a finite number of valuesl & con-

tinuous variate is one rvhich can (but may not) take on a continuous

infinity of values.
For some nonparametric techniques which require ordinal measure-

ment, the requirement is that, there be a continuum underlying the

observed scores. The actual scores we observe may fall into discrete
categories. For example, the actual scores may be either "pass" or

"fail" on a particular item. We may well assume that underlying such

a dichotomy there is a continuum of possible results. That is, some

individuals who were categorized as failing may have been closer to pass-

ing than were others who rvere categorized as failing' Similarly, some
passed only minimally, whereas others passed with ease and dispatch.

The assumption is that "pass" and "fail" represent a continuum dichot-

omized into trvo intervals.
Similarly, in matters of opinion those who are classified as "agree"

and "disagree" may be thought to fall on a continuum. Some who score

as "agree" are actually not very concerned with the issue, lvhereas others

are strongly convinced of their position. Those rvho "disagree" include

those who are only mildly in disagreement as well as die-hard opponents.

Frequently the grossness of Qur measuring devices obscures the under-
lying continuity that may exist. If a variate is truly continuously dis'
trihuted, then the probability of a tie is zero. However, tied scores frc-
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quently occur. Tied scores are almost invariably a reflection of the lack
of sensitivity of our measuring instruments, which fail to distinguish the

small differences rvhich really exist between the tied observations.
Therefore even when tics are observed it may not be unreasonable to
ossume that a continuous distribution underlies our gross measures.

At the risk of being excessively repetitious, the writer rvishes to empha-
size here that pararnetric statistical tests, which use means and standard
deviations (i.e., which require the operations of arithmetic on the original

scores); ought not to be used with data in an ordinal scale. The proper-

ties of an ordinal scale are aol isomorphic to the numerical system known

as arithmetic. When only the rank order of scores is known, means and
standard deviations found on the scores themselves'are in error to the

extent, that the successive intervals (distances between classes) on the

scale are not equal. When parametric techniques of statistical inference

are used with such data, any decisions about hypotheses are doubtful.

Probability statements derived from the application of parametric statis-

tical tests to ordinal data are in error to the extent that the structure

of the method of collecting the data is not isomorphic to arithmetic.
Inasmuch as most of the measurements made by behavioral scientists

culminate in ordinal scales (this seems to be the case except in the field

of psychophysics, and possibly in the use of a few carefully standardized

tests), this point deserves strong emphasis'
Since this book is addressed to the behavioral scientist, and since the

scales used by behavioral scientists typically are at best no stronger than

ordinal, the major pbrtion of this book is devoted to those methods which

are appropriate for testing hypotheses with data measured in an ordinal

scale. These methods, which also have much less circumscribing or

restrictive assumptions in their statistical models than have parametric

tests, make up the bulk of the nonparametric tests.

The Interval Scale

Definition. \{hen a scale has all the characteiistics of an ordinal

scale. and when in addition Llrre ilistances between any two numbers on
the scale are of known size, then me&surement considerably stronger than
ordinality has been achieved. In such a c&se me&surernent has been
achieved in the sense of an interval scale. That is, if our mapping of
several classes of objects is so precise that we know just how large are the

intervals (distances) between all objects on the scale, then we have

achieved interval measurement. An interval scale is characterized by a

common and cbnstant unit of measurement which assigns a real number

to all paire of objects in the ordered set' In this sort of measurement,

the ratio of any two intervals is independent of the unit of measurement
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and of the zero point. In an interval scale, the zero point and the unit"

of measurement are arbitrarY.
Examples. we measure temperature on an interval scale. In fact,

two different scales-centigrade and Fahrenheit-are commonly used.

The unit of measurement and the zero lroint in measuring temperature

are arbitrary; they are difierent for the two scales. However, both scales

contain the same amount and the same kind of information. This is

the case because they are linearly related. That is, a reading on one

scale can be transformed to the Qquivalent reading on the other by the

l inear t ransformat ion 
F :  gc+Bz

where F : number of degrees on Fahrenheit scale

C : number of degrees on centrigrade scale

It can be shorvn that the ratios of temperature differences (intervals)

are independent of the unit of measurement and of the zero point' For

instance, ,,fteezing,, occurs at 0 degrees on the centigrade scale, arrd
,,boiling" occurs at 100 degrees. on the Fahrenheit scale, trfreezing"

occurs ut 32 d"gt".. and,'boiling" at,2I2 degrees. some other readings

of the same temperature on the two scales are:

Centigrade I  o l to l to l l oo

lr l ' l*1",Fahrenheit

Notice that the ratio of the diferences between temperature readings on

one scale is equal to the ratio between the equivalent differences on the

other scale. For example, on the centigraderscale the ratio of the differ-

ences between 30 and 10, and 10 and o, i, 
ffi 

: z' For the com-

parable readings on the Fahrenheit scale, the ratio is 
uqffi 

: ' The

ratio is the same in both cases: 2. In an interval scale, in other words,

the ratio o{ any two intervals is independent of the unit used and of the

zero point, both of which are arbitrary'

Most behavioral scientists aspire to oreate interval scales, and on infre-

quent occasions they succeed. Usually, however, what is ta-ken for suc-

.r.. .o*". because of the untested assumptions the scale maker is willing

to make. One frequent assumption is that the variable being scaled is

normally distributei in the individuals being tested. Having made this

u..o*piiorr, the scale maker manipulates the units of the scale until the

orrrr*id, normal distribution is recovered from the individuals' scores.

This procedure, of course, is only as good as the intuition of the investiga-

tor when he hits upon the distribution to assume'
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Another assumption which is often made in order to create an apparent
interval scale is the assumption that the person's answer of ,,yes,, on
eny one item is exactly equivalent to his answering affirmatively on any
other item. This assumption is made in order to satisfy the requirement
that an interval scale have a common and constant unit of measurement.
In ability or aptitude scales, the equivalent assumption is that giving the
correct answer to any one item is exactly equivalent (in amount of ability
shown) to giving the correct anstl'er to any other item.

Formal properties. Axiomatically, it can be shown that the opera-
ations and relations which give rise to the structure of an interval scale
nre such that the dilferarces in the scale are isomorphic to the structure
of arithmetic. Numbers may be associated with the positions of the
objects on an interval scale so that the operations of arithmetic may be
meanirrgfully performed on the di.ferences between these numbers.

In constructitrg an interval scale, one must not only be al:le to specify
equivalences, as in a nominal scale, and greater-than relations, as in an
ordinal scale, but one must also be able to specify the ratio of any trvo
intervals.

Admissible operations. Any ehange in the numbers associated with
the positions of ihe objects measured in an irrterval scale must preserve
not only the ordering of the objects but also the relatir.e differences
between the objects. That is, the interval scale is "unique up to a
linear transforrr,ation." Thus the information yielded by the seale is
not affected if each number is multiplied by a positive constant and then
a constant is added to this product, that is, f(n) : ar + b. (In the tem-
pera,ture example, a : 3 and b : 32.)

We have already noticed that the zero point in an interval scale is
arbitrary. This is inherent in the fact that the seale is subject to trans.
formations rvhich consist of adding a constant to the numbers making up
the scale.

The interval scale is the first truly qu,antitatite scale that we have
encountered. All ihe common parametric statistics (means, standard
deviations, Pearson correlatious, ete.) are applicable to data in an inter-
val scale, as are the common pararnetric statistieal tests (l test, f' test,
etc.). If measurement in the sense of an interval scale has in fact been
achieved, and if all of the assumptions in the statistical model (given on
page 19) are adequately met, then the researcher should utilize parametric .
statistical tests. In such a case, nonparametric rnethods usually would
not take advantage of all the information contained in the research data.

The Ratio Scale

Definition. When a scale has all the characteristics of an interval
scale and in addition has a true zero point as its origin, it is called a ratio
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scale. In a ratio scale, .the ratio of any two scale points is independent,
of the unit of measurement.

Example. we measure mass or weight in a ratio scale. The scale of
ounces and pounds has a true zero point. So does the scale of grams.
The ratio betrveen any two rveights is independent of the unit of measure-
.mgnt. For example, if we determine the weights of two different objects
not only in pounds but also in grams, we would find that the ratio of the
trvo pound weights is identical to the ratio of the two gram weiglrts.

Formal properties. The operations and relations ivhich give rise to
the numerical values in a ratio scale are such that the scale is isomorphic
to the structure of arithmetic. Therefore the operations of arithmetic
are permissitrle on the numerical values assigned to the objects them-
selves, as rvell as on the intervals between numbers as is the case in the
interval scale.

Ratio scales, most commonly encountered in the physical sciences, are
achieved onlylvhen all four of these relations are operationally possible
to attain: (a) equivalence, (b) greater than, (c) known.ratio of.any trvo
intervals, and (d) knorvn ratio of any two scale values.

Admissible operations. The numbers associated with the rat,io scale
values are " true " numbers u'ith a true zero; only the unit of mcasurement
is arbitrary. Thus the ratio scale is "unique up to multiplication by a
positive constant." That is, the ratios between any two numbers are
preserved ryhen the scale values are all multiplied by a positive constant,
and thus such a transformation does not alter the information gontained
in the seale.

Any statistical test is usable when ratio measurement has been achieved.
In addition to using those previously mentioned as being appropriate for
use rvith data in interval scales, n'ith ratio scales one may use such statis-
ticS as the geometric mean and the coefficient of variation-,statistics
which require knowledge of the true zero point.

Summary

lVleasurement is the process of mapping or assigning numbers to objects
or observatiops. The kind of measurement which is achieved is a func-
tion of the rules under rvhich the numbers *.ere assigned. The operations
and relations employed in obtaining the scores define and limit the manip-
ulations and operations which are permissible in handling the scores;
the manipulations and operations must be those of the numerical struc-
ture to rvhich the measurement is isomorphic.

Four of the most general scales were discussed: the nominal,.ordinal,
interval, and ratio scales. Nominal and ordinal measurement are the
most common types achieved in the behavioral sciences. Da!,a measured
by either nominal or ordinal scales should be analyzed by the non-
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paremetric methods. Data measured in interval or ratio scalea may be
analyzed by parametric methods, if the assumptidns of the parametric
statistical model are tenable.

Table 3.1 summarizes the information in our discussion of various levels
of measurement and of the kinds of statistics and statistical tests which
are appropriate to each level when the assumptions of the tests' statistical
models are satisfied.

Terr,u 3.1. Foun Lnvnr,s * t;;";::ITffi" rss Sr.mrsrrcs Appnopnu.tu
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from which the research sample was drawn. Since these conditions are
not ordinarily tested, they are assumed to hold. The meaningfulness of
the results of a parametric test depends on the validity of these assump-
tions. .Parametric tests also require that the scores under analysis result
from measurement in the strength of at least an interval scale.

A nonparametric statistical'test is a test whose model does not specify
conditions about the parameters of the population from which-the sample
wd,s drawn. Certain assumptions are associated with most nonparamet-
ric statistical tests, i.e., that the observations are independent and that
the variable under study has underlying continuity, but these assump-
tions are fewer and much lyeaker than those associated with parametric
tests. Moreover, nonparametric tests do not require measurement so
strong as that required' for the parametric tests; most nonparametric
tests apply to data in an ordinal scale, and some apply also to data in a
nominal scale.

In this chapter we have discussed the various criteria which should
be considered in the choice of a statistical test for use in makin! a decision
about a research hypothesis. These criteria are (a) the power of the
test, (b) the applicability of the statistical model on which the test is
based to the data of the research, (c) power-effieiency, and (d) the level
of measurement achieved in the research. It has been stated that a
parametric statistical test is most powerful when all the assumptions of
its statistical model are met and when the variables under analysis are
measured in at least an interval scale. However, even when all the
parametric test's assumptions about the population and requirements
about strength of measurement are satisfied, we know from the concept
of power-efficiency that by increasing the sample size by an appropriate
amount we can use & nonp&rametric test rather than the parametric one
and yet retain the same power to reject I/s.

Because the power of any nonparametric test may be increased by
simply increasing the size of N, and because behavioral scientists rarely
achieve the sort of measurement which permits the meaningful use of
parametric tests, nonparametric statistical tests deserve an increasingly
prominent role in research in the behavioral sciences. This book pre-
sents a variety of nonparametric tests for the use of behavioral scientists.
The use of parametric tests in research has been presented' well in a
variety of sourcesr and therefore we will not review those tests here.

fn many of the nonparametric statistical tests to be presented, the
data are changed from scores to ranks or even to signs. Such methods

r Among the many Bources on parametric statistical tests, these are especially
useful: Anderson and Bancroft (1952), Dixon and Massey (1951), Edrvards (f954)r
Fisher (1934; 1935), McNemar (1955), Mood (1950), Snedecor (1946), 

'Walker 
and

I*v (1953).

Defining
relations

Nominal (l) Equivalence

Ordinal

Appropriate
statistical test6

Interval

(1) Equivalence
(2) Greater than

(1) Equivalence
(2) Greater than
(3) Known ratio of

any two inter-
vals

(1) Equivalence
(2) Greater than
(3) Known ratio of

any two inter-
vals

(4) Known ratio of
any two seale
values

Nonparametric
statistical tests

Nonparametric and
parametric statisti-
cal tests

The reader may find other discussions of me&surement in Bergman and
Spence (1944), Coombs (1950; 1952), Davidson, Siegel, and Suppes
(1966), Hempel (1952), Siegel (1956), and Stevens (1946; 1951).

PARAMETRIC AND NONPARAMETRIC STATISTICAL ?ESTS

A parametric statistical test is a test whoee model specifies certain
aonditions (givon on page 19) about the parameters of the population

.,;',,!i,, 
" 

. ,,l ,;tj;"

Examples of
appropriate statistics

Mode
Frequency
Contingency coefhcient

Mediair
Percentile
Spearman rs
Kendall r
Kendall 7F

Mean
Standard deliation
Pearson product-moment

correlation
Multiple product-moment
correlation

Geometric mean
Coefficient of variation
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may arouse the criticism that they "do not use all of the information in

the sample " or that they " throrv arvay inJormation'" The answer to this

objection is contained in thc ans\\crs to these tluestions: (o) Of the

rnethods available, parametrir: and nonparanretric, rvhich uscs the infor-

mation in the sample most appropriately? (b) Horv importartt is it that

the eonclusions from the rcscarch apply generally rathel than only to
populations rvith normal distributions?

The ansrver to the first question depends on the level of measurement

achieved in the researsh aird on the researcher's knorvledge of the pop-

ulation. If the measurement is weaker than that of an interval scale,

by using parametric tests the researcher t-oulcl "add information" and

thereby create distortions which may be as great and as damaging as those
introduced by the t'throrving away of information" which occttrs rvhen

scores ere converted to ranks. N{oreover, the assurnptions n'hich must
be made to justify the use of parametrie tests usually rest on conjecture

and hope, for knorvledge about the populatiotr pararneters is almost invar-
iably lacking. Finally, for sorne population distributions a nonparamet-
ric statistical test is clearly superior in porver to a parametric one
(Whitney, 1948).

The ansn'er to the second cluestion can be given only by the investigator
as he considers the substantive aspects of the research problem.

The relevance of the dist:rtssion of thi$ chapter to the choice between
parametric and nonparametric statistical tests may be sharpened by the
summary belorv, rvhich lists the advantages and disadvantages of non-
parametric statistical tests.

Advantages of Nonparametric Statistical Tests

1. Probability statements obtained from most nonparametric statis-
tical tests are exact probahilities (except in the case of large samples,
where excellent approximations a.re available), regardless of the shape of
the population distribution from rvhich the random sarnple rvas dfawn.
The accuracy of the probability statement does not depend on the shape

of the population, although some nonparametric tests may assume iden-

tity of shape of two or more populatinn distributions, and some others

assume syrnmetrical population distributions. In certain cases, the non-
parametric tests do assumc that the underlying clistribution is continuous,

an assutnption which they share vvit'h paramctric tests.
2. If sarnple sizcs as sma]l as lf : 0 are used, there is no aiterttative to

using a nonparametric statistical test unless the nature of the population

distribution is lcnown exactly.
3. There are suitable nonparametric statistical tests for treatilrg sam-

ples made up of observations from several diferent populations. None
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of the parametric tests can handle such data without requiring us to make
seemingly unrealistic assumptions

4. Nonpararnetric statistical tests are available to treat data which are
inherently in ranks as well as data whose seemingly numerical scores
have the strength of ra,nks. That is, the researcher rney only be able to
say of his subjects that one has more or less of the characteristic than
another, rvithout being able lo say how much more or less. For example,
in studying. sueh a variable as anxiety, we may be able to state that sub-
ject A is more anxious than subject B without knowing at all exactly
how much.more anxious.4. is. If data are inherently in ranks, or even
if they can only be eategorized as plus or minus (more or less, better or
worse), they can be treated by nonparametric methods, whereas they
cannot be treated by parametric methods unless precarious and perhaps
unrealistic assumptions are made about the underlying distributions.

5. Nonparametric methods are available to treat data which are simply
classificatory, i.e., are measured in a nominal scale. No parametiic
technique applies to such data.

6. Nonparametric statistical tests are typically much easi6r to learn
and to apply than are parametric tests.

Disadvantages of Nonparametric Statistical Tests

1. If all the assumptions of the parametric statistical model are in fact
met in the data, and if the measurement is of the required strength, then
nonparametric statistical tests are wasteful of data. The degree of
wastefulness is expressed by the power-emciency of the nonparametric
test. (It will be remembered that if a nonparametric statistical test has
power-efficiency of, say, 90 per ccnt, this means that where all the con-
d,itions of the parametr'ic test are salisfied the appropriate parametric test
would be just as effective with a sarnple rvhich is 10 per cent smaller than
that used in the nonparametric analysis.)

2. There are as yet no nonparametric rnethods for testing interactions
in the analysis of variance model, unless special assumptions are made
about additivity. (Perhaps we should disregard this distinction because
parametric statistical tests are also forced to make the assumption of
additivity. However, the problem of higher-ordered interactions has
yet, to be dealt with in the literature of nonparametric methods.)t

Another objection that has been entered against nonparametric
methods is that the tests and their accompanying tables of significant
values have been widely scattered in various publications, many highly

1 After this book had been set in type, a nonparametric test was presented *'hich
contributes to the solution of this problem. See Wilson, K. V. 1956. A distribu-
tion-free test of analysis of variance hypotheses. Psychol, Bull., 63,96-101.
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specialized, and they have therefore been comparatively inaccessible to
the behavioral scientist. In preparing this book, the writer'g intention
has been to rob that objection of its force. This book attempts to present
all the nonparametric techniques of statistical inference and measures of
association that the behavioral scientist is likely to need, and it gives all
of the tables necessary for the use of these techniques. Although this
text is not exhaustive in its coverage of nonparametric tests-it could not
be without being excessively redundant-enough tests are included in
the chapters which follow to give the behavioral scientist wide latitude in
choosing & nonp&r&metric technique appropriate to his research design
and useful for testing his research hypothesis.

i i ,.'l
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THE ONE.SAMPLE CASE

In this chapter we present those nonparametric statistical tests which
may be used to test-a hypothesis which calls for drawing just one sample.
The tests tell us whether the particular sample could have come from
some specified population. These tests are in contrast to the two-sample
tests, which may be more familiar, which compare two samples and test
whether it is likely that the two came from the same population.

The one-sample test is usually of the goodness-of-fit type. In the
typical case, we draw a random sample and then test the hypothesis that
this sample was drawn from a population with a specified distribution.
Thus the one-sample test can answer questions like these: Is there a
significant difference in location (central tendency) between the sample
and the population? Is there a significant difierence between the
observed frequencies and the frequencies we would.expect on the basis
of some principle? Is there a significant difference between observed
and expected proportions? fs it reasonable to believe that this sample
has been drawn from a population of a specified shape or form (e.g., nor-
mal, rectangular)? Is it reasonable to believe'that this sample is a ran-
dom sample from some known population?

In the one-sample case a common parametric technique is to apply a
f test to the difference between the observed (sample) mean and the
expected (population) mean. The I test, strictly speaking, assumes that
the observations or scores in the sarnple have come from a normally drs-
tributed population. The l. test also requires that the observations be
measured at least in an interval scale.

There are many sorts of data to which the I test may be inapplicable.
The experimenter may find that'(o) the assumptions and requirements
of the t test are unrealistic for his data, (b) it is preferable to avoid making
the assumptions of the C test and thus to gain greater generality for the
conclusions, (c) the data of his research are inherently in ranks and thus
not amenable to analysis by the I test, (d) the data may be simply clas-
sificatory or enumerative and thus not amenable to analysis by the I
test, or (e) he is not interested only in differences in location but rather
wishes to expose any kind of difference whatsoever. In such instances
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