CHAPTER 3

CHOOSING AN APPROPRIATE STATISTICAL TEST

When alternative statistical tests are available for a given research
design, as is very often the case, it is necessary to employ some rationale
for choosing among them. In Chap. 2 we presented orne criterion to use
in choosing among alternative statistical tests: the criterion of power.
In this chapter other criteria will be presented.

The reader will remember that the power of a statistical analysis is
partly a function of the statistical test employed in the analysis. A
statistical test is a good one if it has a small probability of rejecting H,
when H, is true, but a large probability of rejecting Ho when H, is false.
Suppose we find two statistical tests, A and B, which have the same
probability of rejecting H, when it is true. It might seem that we should
simply select the one that has the larger probability of rejecting H, when
it is false.

However, there are considerations other than power which enter into
the choice of a statistical test. In this choice we must consider thé
manner in which the sample of scores was drawn, the nature of the pop-
ulation from which the sample was drawn, and the kind of measurement
or scaling which was employed in the operational definitions of the var-
iables involved, i.e., in the scores. All these matters enter into determin-
ing which statlstlcal test is optimum or most appropriate for analyzmg a
particular set of research data.

THE STATISTICAL MODEL

When we have asserted the nature of the population and the manner
of sampling, we have established a statistical model. Associated with
every statistical test is a model and a measurement. requirement; the
test is valid under certain conditions, and the model and the measure-
ment requirement specify those conditions. Sometimes we are able to
test whether the conditions of a particular statistical model are met, but
more often we have to assume that they are met. Thus the conditions
of the statistical model of a test are often called the ‘‘assumptions” of
the test. All decisions arrived at by the use of any statistical test must
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arry with them this qualification: ‘‘If the model used was correct, and
the measurement requirement was satisfied, then . . . .”’

It is ‘obvious that the fewer or weaker are the assumptions that define

particular model, the less qualifying we need to do about our decision

rrived at by the statistical test associated with that model. That is,
he fewer or weaker are the assumptions, the more general are the
onclusions.

However, the most powerful tests are those which have the strongest

r most extensive assumptions. The parametric tests, for example, the
or F tests, have a variety of strong assumptions underlying their use:
Vhen those assumptions are valid, these tests are the most likely of all
asts to reject Hy when H, is false. That is, when research data may
ppropriately be analyzed by a parametric test, that test will be more
owerful than any other in rejecting H, when it is false. Notice, how-
ver, the requirement that the research data must be appropriate for the
est. What constitutes such appropriateness? What are the condi-
ions that are associated with the statistical model and the measurement,
equirement underlying, say, the ¢ test? The conditions which must be
atisfied to make the ¢ test the most powerful one, and in fact before any
'onfidence can be placed in any probability statement obtained by the
1se of the ¢ test, are at least these:

1. The observations must be independent. That is, the selection of
any one case from the population for inclusion in the sample must not
bias the chances of any other case for inclusion, and the score which is
assigned to any case must not bias the score which is assigned to any
other case.

2. The observations must be drawn from normally distributed pop-
ulations. .

3. These populations must have the same variance (or, in special cases,
they must have a known ratio of variances).

4. The variables involved must have been measured in at least an
interval scale, so that it is possible to use the operations of arithmetic
(adding, dividing, finding means, etc.) on the scores.

In the case of the analysis of variance (the F.test), another condition
is added to those already given:

5. The means of these normal and homoscedastic populations must
be linear combinations of effects due to columns and/or rows. That is,
the effects must be additive.

All the above conditions [except (4), which states the measurement
requirement] are elements of the parametric statistical model. With the
possible exception of the assumption of homoscedasticity (equal var-
iances) these conditions are ordinarily not tested in the course of the
performance of a statistical analysis. Rather, they are presumptions
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which are accepted, and their truth or falsity determines the meaning—
fulness of the probability statement arrived at by the parametric

test. .
When we have reason to believe that these conditions are met in the

data under analysis, then we should certainly choose a parametric statis-

tical test, such as ¢ or F, for analyzing those data. Such a choice is
optimum because the parametric test will be most powerful for rejecting
H, when it should be rejected.

But what if these conditions are not met? What happens when the
population is not normally distributed? What happens when the meas-
urement is not so strong as an interval scale? What happens when the
populations are not equal in variance?

When the assumptions constituting the statistical model for a test
are in fact not met, or when the measurement is not of the required
strength, then it is difficult if not impossible to say what is reall}f the
power of the test. It is even difficult to estimate the exte.nt to wl}lch a
probability statement about the hypothesis in question is meanmgful
when that probability statement results from the unacceptable applica-
tion of a test. Although some empirical evidence has been gathered to
show that slight deviations in meeting the assumptions underlying para-
metric tests may not have radical effects on the obtained probability
figure, there is as yet no general agreement as to what constitutes a
“glight’’ deviation.

POWER-EFFICIENCY

We have already noticed that the fewer or weaker are the assumptions
that constitute a particular model, the more general are the conclusions
derived from the application of the statistical test associated with that
model but the less powerful is the test of Ho. This assertion is generally
true for any given sample size. But it may not be true in the comparison
of two statistical tests which are applied to two samples of 'unequal size.
That is, if N = 30 in both instances, test A may be more powerful than
test B. But the same test B may be more powerful with N = 30 than is
test A with N = 20. In other words, we can avoid the dilemma of hav-
ing to choose between power and generality by selecting a statistical test
which has broad generality and then increasing its power to that of the
most powerful test available by enlarging the size of the sample.

The concept of power-efficiency is concerned with the amount of increase
in sample size which is necessary to make test B as powerful as test A.
If test A is the most powerful known test of its type (when used with
data which meet its conditions), and if test B is another test for the same
research design which is just as powerful with N, cases as is test A with
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N, cases, then

Power-efficiency of test B = (100) —%—“ per cent
b

For example, if test B requires a sample of N = 25 cases to have the same
power as test A has with N = 20 cases, then test B has power-efficiency
of (100)35 per cent, i.e., its power-efficiency is 80 per cent. A power-
efficiency of 80 per cent means that in order to equate the power of test A
and test B (when all the conditions of both tests are met, and when test A
is the more powerful) we need to draw 10 cases for test B for every 8 cases
drawn for test A. ,

Thus we can avoid having to meet some of the assumptions of the most
powerful tests, the parametric tests, without losing power by simply
choosing a different test and drawing a larger N. In other words, by
choosing another statistical test with fewer assumptions in its model and
thus with greater generality than the ¢ and F tests, and by enlarging our
N, we can avoid having to make assumptions 2, 3, and 5 above, and still
retain equivalent power to reject H,.

Two other conditions, 1 and 4 above, underlie parametric statistical
tests. Assumption 1, that the scores are independently drawn from the
population, is an assumption which underlies all statistical tests, paramet-
ric or nonparametric. But assumption 4, which concerns the strength
of measurement required for parametric tests—measurement must be
at least in an interval scale—is not shared by all statistical tests. Differ-
ent tests require measurement of different strengths. In order to under-
stand the measurement requirements of the various statistical tests, the
reader should be conversant with some of the basic notions in the theory
of measurement. The discussion of measurement which occupies the
next few pages gives the required information.

MEASUREMENT

When a physical scientist talks about measurement, he usually means
the assigning of numbers to observations in such a way that the numbers
are amenable to analysis by manipulation or operation according to cer-
tain rules. This analysis by manipulation will reveal new information
about the objects being measured.. In other words, the relation between
the things being observed and the numbers assigned to the observations
is so direct that by manipulating the numbers the physical scientist
obtains new information about the things. For example, he may deter-
mine how much a homogeneous mass of material would weigh if cut in
half by simply dividing its weight by 2.

The social scientist, taking physics as his model, usually attempts to
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do likewise in his scoring or measurement of social variables. But in
his scaling the social scientist very often overlooks a fundamental fact
in measurement theory. He overlooks the fact that in order for him to
be able to make certain operations with numbers that have been assigned
t0 observations, the structure of his method of mapping numbers (assigning
scores) to observations must be isomorphic to some numerical structure
which includes these operations. If two systems are isomorphic, their
structures are the same in the relations and operations they allow.

For example, if a researcher collects data made up of numerical scores
and then manipulates these scores by, say, adding and dividing (which
are necessary operations in finding means and standard deviations), he
is assuming that the structure of his measurement is isomorphic to that
numerical structure known as arithmetic. That is, he is assuming that
he has attained a high level of measurement.

The theory of measurement consists of a set of separate or distinct
theories, each concerning a distinct level of measurement. The operations
allowable on a given set of scores are dependent on the level of measure-
ment achieved. Here we will discuss four levels of measurement—
nominal, ordinal, interval, and ratio—and will discuss the operations and
thus the statistics and statistical tests that are permitted with each level.

The Nominal or Classificatory Scale

Definition. Measurement at its weakest level exists when numbers
or other symbols are used simply to classify an object, person, or char-
acteristic. When numbers or other symbols are used to identify the
groups to which various objects belong, these numbers or symbols con-
stitute a nominal or classificatory scale. “

Examples. The psychiatric system of diagnostic groups constitutes
a nominal scale. When a diagnostician identifies a person as “schiz-
ophrenic,” “paranoid,” ‘“manic-depressive,” or ‘“‘psychoneurotic,” he is
using a symbol to represent the class of persons to which this person
belongs, and thus he is using nominal scaling.

The numbers on automobile license plates constitute a nominal scale.
If the assignment of plate numbers is purely arbitrary, then each plated
car is a member of a unique subclass. - But if, as is common in the United

States, a certain number or letter on the license plate indicates the county

in which the car owner resides, then each subclass in the nominal scale
“consists of a group of entities: all owners residing in the same county.
Here the assignment of numbers must be such that the same number (or
letter) is given to all persons residing in the same county and that differ-
ent numbers (or letters) are given to people residing in different counties.
That is, the number or letter on the license plate must clearly indicate to
which of a set of mutually exclusive subclasses the owner belongs.

MEASUREMENT 23

Numbers on football jerseys and social-security numbers are other
examples of the use of numbers in nominal scaling,.

Formal properties. All scales have certain formal properties. These
properties provide fairly exact definitions of the scale’s characteristics,
more exact definitions than we can give in verbal terms. These proper-
ties may be formulated more abstractly than we have done here by a set
of axioms which specify the operations of scaling and the relations among
the objects that have been scaled.

In a nominal scale, the scaling operation is partitioning a given class
into a set of mutually exclusive subclasses. The only relation involved
is that of equivalence. That is, the members of any one subclass must be
equivalent in the property being scaled. This relation is symbolized by
the familiar sign: =. - The equivalence relation is reflexive, symmetrical,
and transitive.! : '

Admissible operations. Since in any nominal scale the classification
may be equally well represented by any set of symbols, the nominal scale
is said to be ‘““unique up to a one-to-one transformation.” The symbols
designating the various subclasses in the scale may be interchanged, if
this is done consistently and completely. IFor example, when new license
plates are issued, the license number which formerly stood for one county
can be interchanged with that which had stood for another county.
Nominal scaling would be preserved if this change-over were performed
consistently and thoroughly in the issuing of all license plates. Such
one-to-one transformations are sometimes called ‘“the symmetric group
of transformations.”

Since the symbols which designate the various groups on a nominal
scale may be interchanged without altering the essential information in
the scale, the only kinds of admissible descriptive statistics are those

-which would be unchanged by such a transformation: the mode, frequency

counts, etc. Under certain conditions, we can test hypotheses regarding
the distribution of cases among categories by using the nonparametric
statistical test, x2, or by using a test based on the binomial expansion.
These tests are appropriate for nominal data because they focus on fre-
quencies in categories, i.e.,, on enumerative data. The most common
measure of association for nominal data is the contingency coefficient, C,
a nonparametric statistic.

The Ordinal or Ranking Scale

Definition. It may happen that the objects in one category of a scale
are not just different from the objects in other categories of that scale,

t Reflexive: x = z for all valuesof z. Symmetrical:if x = y, theny = 2. Transitive:
ifz =yand y = ¢z thenz = 2.
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but that they stand in some kind of relation to them. Typical relations
among classes are: higher, more preferred, more difficult, more disturbed,
more mature, etc. Such relations may be designated by the carat (>)
which, in general, means ‘greater than.” In reference to particular
scales, > may be used to designate is preferred to, is higher than, is more
difficult than, etc. Its specific meaning depends on the nature of the rela-
tion that defines the scale.

Given a group of equivalence classes (i.e., given a nominal scale), if
the relation > holds between some but not all pairs of classes, we have

- a partially ordered scale. If the relation > holds for all pairs of classes so
that a complete rank ordering of classes arises, we have an ordinal scale.

Examples. Socioeconomic status, as conceived by Warner and his
associates,! constitutes an ordinal scale. In prestige or social accept-

ability, all members of the upper middle class are higher than (>) all

"members of the lower middle class. The lower middles, in turn, are
higher than the upper lowers. The = relation holds among members of
the same class, and the > relation holds between any pair of classes.

The system of grades in the military services is another example of an
ordinal scale. Sergeant > corporal > private.

Many personality inventories and tests of ability or aptitude result in
scores which have the strength of ranks. Although the scores. may
appear to be more precise than ranks, generally these scales do not meet
the requirements of any higher level of measurement and may properly be
viewed as ordinal.

Formal properties. Axiomatically, the fundamental difference between
a nominal and an ordinal scale is that the ordinal scale incorporates not
only the relation of equivalence (=) but also the relation ‘“greater than”
(>). The latter relation is irreflexive, asymmetrical, and transitive.?

Admissible operations. Since any order-preserving transformatlon
does not change the information contained in an ordinal scale, “the scale
is said to be “unique up to a monotonic transformation.” That is, it
does not matter what numbers we give to a pair of classes or to members
of those classes, just as long as we give a higher number to the members
of the class which is “greater’ or ‘“more preferred.” (Of course, one
may use the lower numbers for the “more preferred’” grades. Thus we
usually refer to excellent performance as ‘“first-class,” and to progres-
sively inferior performances as ‘“‘second-class” and ‘‘third-class.” So
long as we are consistent, it does not matter whether higher or lower num-
bers are used to denote ““greater’’ or ‘“more preferred.”)

! Warner, W. L., Mecker, M., and Eells, K. 1949. Social class in America. New
York: Science Research Associates.

* Irreflexive: it is not true for any z that z > z. Asymmelrical; if x > y, then
y > x. Transitive: if x > yand y > z, then z > 2.
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For example, a corporal in the army wears two stripes on his sleeve
and a sergeant wears three. These insignia denote that sergeant > cor-
poral. This relation would be equally well expressed if the corporal wore
four stripes and the sergeant wore seven. That is, a transformation
which does not change the order of the classes is completely admissible
because it ‘does not involve any loss of information. Any or all the numbers
applied to classes in an ordinal scale may be changed in any fashion which
does not alter the ordering (ranking) of the objects.

The statistic most appropriate for describing the central tendency of
scores in an ordinal scale is the median, since the median is not affected
by changes of any scores which are above or below it as long as the
number of scores above and below remains the same. With ordinal
scaling, hypotheses can be tested by using that large group of nonpara-
metric statistical tests which are sometimes called ‘‘order statistics” or
“ranking statisties.” Correlation coefficients based on rankings (e.g.,
the Spearman rs or the Kendall 7) are appropriate.

The only assumption made by some ranking tests is that the scores we
observe are drawn from an underlying continuous distribution. Para-
metric tests also make this assumption. An underlying continuous var-
iate is one that is not restricted to having only isolated values. It may
have any value in a certain interval. - A discrete variate, on the other
hand, is one which can take on only a finite number of values; a con-
tinuous variate is one which can (but may not) take on a continuous
infinity of values.

For some nonparametric. techniques which require ordinal measure-
ment, the requirement is that there be a continuum wunderlying the
observed scores.- The actual scores we observe may fall into discrete
categories. For example, the actual scores may be either ‘“pass” or
“fail” on a particular item. We may well assume that underlying such
a dichotomy there is a continuum of possible results. That is, some
individuals who were categorized as failing may have been closer to pass-
ing than were others who were categorized as failing. Similarly, some
passed only minimally, whereas others passed with ease and dispatch.
The assumption is that ‘ pass” and “fail” represent a continuum dichot-
omized into two intervals.

Similarly, in matters of opinion those who are classified as ‘‘agree”
and “disagree” may be thought to fall on a continuum. Some who score
as ‘“‘agree’’ are actually not very concerned with the issue, whereas others
are strongly convinced of their position. Those who “dlsafrree include
those who are only mildly in disagreement as well as die-hard opponents.

Frequently the grossness of our measuring devices obscures the under-
lying continuity that may exist. If a variate is truly continuously dis-
tributed, then the probability of a tie is zero. However, tied scores fre-
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quently occur. Tied scores are almost invariably a reflection of the lack
of sensitivity of our measuring instruments, which fail to distinguish the
small differences which really exist between the tied observations.
Therefore even when ties are observed it may not be unreasonable to
assume that a continuous distribution underlies our gross measures.

At the risk of being excessively repetitious, the writer wishes to empha-
size here that parametric statistical tests, which use means and standard
deviations (i.e., which require the operations of arithmetic on the original
scores), ought not to be used with data in an ordinal scale. The proper-
- ties of an ordinal scale are not isomorphic to the numerical system known
as arithmetic. When only the rank order of scores is known, means and
standard deviations found on the scores themselves are in error to the
extent that the successive intervals (distances between classes) on the
scale are not equal. When parametric techniques of statistical inference
are used with such data, any decisions about hypotheses are doubtful.
Probability statements derived from the application of parametric statis-
tical tests to ordinal data are in error to the extent that the structure
of the method of collecting the data is not isomorphic to arithmetic.
Inasmuch as most of the measurements made by behavioral scientists
culminate in ordinal scales (this seems to be the case except in the field
of psychophysics, and possibly in the use of a few carefully standardized
tests), this point deserves strong emphasis.

Since this book is addressed to the behavioral scientist, and since the

scales used by behavioral scientists typically are at best no stronger than
ordinal, the major portion of this book is devoted to those methods which
are appropriate for testing hypotheses with data measured in an ordinal
scale. These methods, which also have much less circumscribing or
restrictive assumptions in their statistical models than have parametric
tests, make up the bulk of the nonparametric tests.

The Interval Scale

Definition. When a scale has all the characteristics of an ordinal
scale, and when in addition the distances between any two numbers on
the scale are of known size, then measurement considerably stronger than
ordinality has been achieved. In such a case measurement has been
achieved in the sense of an interval scale. That is, if our mapping of
several classes of objects is so precise that we know just how large are the
intervals (distances) between all objects on the scale, then we have
achieved interval measurement. An interval scale is characterized by a
common and constant unit of measurement which assigns a real number
to all pairs of objects in the ordered set. In this sort of measurement,
the ratio of any two intervals is independent of the unit of measurement

MEASUREMENT

and of the zero point. In an interval scale, the zero point and the unit ’
of measurement are arbitrary. ,

Examples. We measure temperature on an interval scale. In fact,
two different scales—centigrade and Fahrenheit—are commonly used.
The unit of measurement and the zero point in measuring temperature
are arbitrary; they are different for the two scales. However, both scales
contain the same amount and the same kind of information. This is
the case because they are linearly related. That is, a reading on one
scale can be transformed to the equivalent reading on the other by the

linear transformation
F =3C + 32

where F = number of degrees on Fahrenheit scale
C = number of degrees on centrigrade scale
It can be shown that the ratios of temperature differences (intervals)
are independent of the unit of measurement and of the zero point. For
instance, “freezing’ occurs at 0 degrees on the centigrade scale, and
“oiling” occurs at 100 degrees. On the Fahrenheit scale, ‘'freezing”
oceurs at 32 degrees and “boiling” at 212 degrees. Some other readings
of the same temperature on the two scales are:

Centigrade . 0 I 10 ~ 30 I 100

Fahrenheit l 32 | 50 l 86 | 212

Notice that the ratio of the differences between temperature readings on
one scale is equal to the ratio between the equivalent differences on the
other scale. For example, on the centigrade scale the ratio of the differ-
; - 10 v
ences between 30 and 10, and 10 and 0, is 80l 2. For the com-

10—-0
y ; . . 8 — 50

parable readings on the Fahrenheit scale, the ratio is 50 =32 = 2. The
ratio is the same in both cases: 2. In an interval scale, in other words,
the ratio of any two intervals is independent of the unit used and of the
zero point, both of which are arbitrary. r ;

Most behavioral scientists aspire to create interval scales, and on infre-
quent occasions they succeed. Usually, however, what is taken for suc-
cess comes because of the untested assumptions the scale maker is willing
to make. One frequent assumption is that the variable being scaled is
normally distributed in the individuals being tested. Having made this
assumption, the scale maker manipulates the units of the scale until the
assumed normal distribution is recovered from the individuals’ scores.
This procedure, of course, is only as good as the intuition of the investiga-
tor when he hits upon the distribution to assume.
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Another assumption which is often made in order to create an apparent
interval scale is the assumption that the person’s answer of “yes” on
any one item is exactly equivalent to his answering affirmatively on any
other item. This assumption is made in order to satisfy the requirement
that an interval scale have a common and constant unit of measurement.
In ability or aptitude scales, the equivalent assumption is that giving the
correct answer to any one item is exactly equivalent (in amount of ability
shown) to giving the correct answer to any other item.

Formal properties. Axiomatically, it can be shown that the opera-

ations and relations which give rise to the structure of an interval scale
are such that the differences in the scale are isomorphic to the structure
of arithmetic. Numbers may be associated with the positions of the
objects on an interval scale so that the operations of arithmétic may be
meaningfully performed on the differences between these numbers.

In constructing an interval scale, one must not only be able to specify
equivalences, as in a nominal scale, and greater-than relations, as in an
ordinal scale, but one must also be able to specify the ratio of any two
intervals. '

Admissible operations. Any change in the numbers associated with
the positions of the objects measured in an interval scale must preserve
not only the ordering of the objects but also the relative differences
between the objects. That is, the interval scale is ‘‘unique up to a
linear transformation.” Thus the information yielded by the scale is
not affected if each number is multiplied by a positive constant and then
a constant is added to thls product, that is, f(x) = ax + b. (In the tem-
perature example, @ = § and b = 32.)

We have already noticed that the zero point in an interval scale is
arbitrary. This is inherent in the fact that the scale is subject to trans-
formations which consist of adding a constant to the numbers making up
the scale.

The interval scale is the first truly quantitative scale that we Have

encountered. All the common parametric statistics (means, standard

deviations, Pearson correlations, ete.) are applicable to data in an inter-
val scale, as are the common parametric statistical tests (¢ test, F' test,
etc.). If measurement in the sense of an interval scale has in fact been
achieved, and if all of the assumptions in the statistical model (given on

page 19) are adequately met, then the researcher should utilize parametric -

statistical tests. In such a case, nonparametric methods usually would
- not take advantage of all the information contained in the research data.

The Ratio Scale

Definition. When a scale has all the characteristics of an interval
scale and in addition has a true zero point as i*s origin, it is called a ratio
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scale. In a ratio scale; the ratio of any two scale points is independent
of the unit of measurement.

Example. We measure mass or weight in a ratio scale. The scale of
ounces and pounds has a true zero point. So does the scale of grams.
The ratio between any two weights is independent of the unit of measure-

‘ment. For example, if we determine the weights of two different objects

not only in pounds but also in grams, we would find that the ratio of the
two pound weights is identical to the ratio of the two gram weights.

Formal properties. The operations and relations which give rise to
the numerical values in a ratio scale are such that the scale is isomorphic
to the structure of arithmetic. Therefore the operations of arithmetic
are permissible on the numerical values assigned to the objects them-
selves, as well as on the intervals between numbers as is the case 1n the
interval scale.

Ratio scales, most commonly encountered in the physical sciences; are
achieved only when all four of these relations are operationally possible
to attain: (a) equivalence, (b) greater than, (c) known ratio of.any two
intervals, and (d) known ratio of any two scale values.

Admissible operations. The numbers associated with the ratio scale
values are ‘“true” numbers with a true zero; only the unit of measurement
is arbitrary. Thus the ratio scale is “unique up to multiplication by a
positive constant.” That is, the ratios between any two numbers are
preserved when the scale values are all multiplied by a positive constant,
and thussuch a transformation does not alter the information contalned
in the scale.

Any statistical test is usable when ratio measurement has been achieved.
In addition to using those previously mentioned as being appropriate for
use with data in interval scales, with ratio scales one may use such statis-
tics as the geometric mean and the coefficient of variation—statistics
which require knowledge of the true zero point.

Summary

Measurement is the process of mapping or assigning numbers to objects
or observations. The kind of measurement which is achieved is a func-
tion of the rules under which the numbers were assigned. The operations
and relations employed in obtaining the scores define and limit the manip-
ulations and operations which are permissible in handling the scores;
the manipulations and operations must be those of the numerical struc-
ture to which the measurement is isomorphie.

Four of the most general scales were discussed: the nominal, ordinal,
interval, and ratio scales. Nominal and ordinal measurement are the
most common types achieved in the behavioral sciences. Data measured
by either nominal or ordinal scales should be analyzed by the non-
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parametric methods. Data measured in interval or ratio scales may be
analyzed by parametric methods, if the assumptions of the parametric
statistical model are tenable.

Table 3.1 summarizes the information in our discussion of various levels
of measurement and of the kinds of statistics and statistical tests which
are appropriate to each level when the assumptions of the tests’ statistical

models are satisfied.

TaBLE 3.1. Four LEvELS OF MEASUREMENT AND THE STATISTICS APPROPRIATE

T0 EacH LEVEL

Scale

Defining
relations

Examples of
appropriate statistics

Appropriate
statistical tests
- 1

Nominal

Ordinal

Interval

Ratio

(1) Equivalence

1) EquiQalence
(2) Greater than

(1) Equivalence

(2) Greater than

(3) Known ratio of
any two inter-
vals

(1) Equivalence

(2) Greater than

(3) Known ratio of
any two inter-
vals

(4) Known ratio of
any two scale
values

Mode
Frequency
Contingency coefficient

Median
Percentile
Spearman rs
Kendall 7
Kendall W

Mean

Standard deviation

Pearson product-moment
correlation

Multiple product-moment
correlation

Geometric mean
Coefficient of variation

Nonparametric
statistical tests

Nonparametric and
parametric statisti-
cal tests

The reader may find other discussions of measurement in Bergman and
Spence (1944), Coombs (1950; 1952), Davidson, Siegel, and Suppes
(1955), Hempel (1952), Siegel (1956), and Stevens (1946; 1951).

PARAMETRIC AND NONPARAMETRIC STATISTICAL TESTS

A parametric statistical test is a test whose model specifies certain
conditions (given on page 19) about the parameters of the population
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from which the research sample was drawn. Since these conditions are
not ordinarily tested, they are assumed to hold. The meaningfulness of
the results of a parametric test depends on the validity of these assump-
tions. .Parametric tests also require that the scores under analysis result
from measurement in the strength of at least an interval scale.

A nonparametric statistical test is a test whose model does not specify:
conditions about the parameters of the population from which- the sample
was drawn. Certain assumptions are associated with most nonparamet-
ric statistical tests, i.e., that the observations are independent and that
the variable under study has underlying continuity, but these assump-
tions are fewer and much weaker than those associated with parametric
tests. Moreover, nonparametric tests do not require measurement so
strong as that required for the parametric tests; most nonparametric
tests apply to data in an ordinal scale, and some apply also to data in a
nominal scale.

In this chapter we have discussed the various criteria which should
be considered in the choice of a statistical test for use in making a decision
about a research hypothesis. These criteria are (a) the power of the
test, (b) the applicability of the statistical model on which the test is
based to the data of the research, (¢) power-efficiency, and (d) the level
of measurement achieved in the research. It has been stated that a
parametric statistical test is most powerful when all the assumptions of
its statistical model are met and when the variables under analysis are
measured in at least an interval scale. However, even when all the
parametric test’s assumptions about the population and requirements
about strength of measurement are satisfied, we know from the concept
of power-efficiency that by increasing the sample size by an appropriate
amount we can use a nonparametric test rather than the parametric one
and yet retain the same power to reject Ho.

Because the power of any nonparametric test may be increased by
simply increasing the size of N, and because behavioral scientists rarely
achieve the sort of measurement which permits the meaningful use of
parametric tests, nonparametric statistical tests deserve an increasingly
prominent role in research in the behavioral sciences. This book pre-
sents a variety of nonparametric tests for the use of behavioral scientists.
The use of parametric tests in research has been presented well in a
variety of sources! and therefore we will not review those tests here.

In many of the nonparametric statistical tests to be presented, the
data are changed from scores to ranks or even to signs. Such methods

! Among the many sources on parametric statistical tests, these are especially
useful: Anderson and Bancroft (1952), Dixon and Massey (1951), Edwards (1954),
Fisher (1934; 1935), McNemar (1955), Mood (1950), Snedecor (1946), Walker and
Lev (1953).
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may arouse the criticism that they ““do not use all of the information in
the sample” or that they “ throw away information.” The answer to this
objection is contained in the answers to these questions: (a) Of the
methods available, parametric and nonparametric, which uses the infor-
mation in the sample most appropriately? (b) How important is it that
the conclusions from the research apply generally rather than only to
populations with normal distributions?

The answer to the first question depends on the level of measurement
achieved in the research and on the researcher’s knowledge of the pop-
ulation. If the measurement is weaker than that of an interval scale,
by using parametric tests the researcher would “add information” and
thereby create distortions which may be as great and as damaging as those
introduced by the ‘“throwing away of information’ which occurs when
scores are converted to ranks. Moreover, the assumptions which must
be made to justify the use of parametric tests usually rest on conjecture
and hope, for knowledge about the population parameters is almost invar-
iably lacking. TFinally, for some population distributions a nonparamet-
ric statistical test is clearly superior in power to a parametric one
(Whitney, 1948).

The answer to the second question can be given only by the investigator

as he considers the substantive aspects of the research problem. _

The relevance of the discussion of this chapter to the choice between
parametric and nonparametric statistical tests may be sharpened by the
summary below, which lists the advantages and disadvantages of non-
parametric statistical tests.

Advantages of Nonparametric Statistical Tests

1. Probability statements obtained from most nonparametric statis-
tical tests are exact probabilities (except in the case of large samples,
where excellent approximations are available), regardless of the shape of
the population distribution from which the random sample was drawn.
The accuracy of the probability statement does not depend on the shape
of the population, although some nonparametric tests may assume iden-
tity of shape of two or more population distributions, and some others
assume symmetrical population distributions. In certain cases, the non-
parametric tests do assume that the underlying distribution is continuous,
an assumption which they share with parametric tests. :

2. If sample sizes as small as N = 6 are used, there is no alternative to
using a nonparametric statistical test unless the nature of the population
distribution is known exactly.

3. There are suitable nonparametric statistical tests for treating sam-
ples made up of observations from several different populations. None
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of the parametric tests can handle such data without requiring us to ma.ke
seemingly unrealistic assumptions.

4. Nonparametnc statistical tests are available to treat data which are
inherently in ranks as well as data whose seemingly numerical scores
have the strength of ranks. That is, the researcher may only be able to
say of his subjects that one has more or less of the characteristic than
another, without being able to say how much more or less. For example,
in studying such a variable as anxiety, we may be able to state that sub-
ject A is more anxious than subject B without knowing at all exactly
how much.more anxious A is. If data are inherently in ranks, or even
if they can only be categorized as plus or minus (more or less, better or
worse), they can be treated by nonparametric methods, whereas they
cannot be treated by parametric methods unless precarious and perhaps
unrealistic assumptions are made about the underlying distributions.

5. Nonparametric methods are available to treat data which are simply
classificatory, i.e., are measured in a nominal scale. No parametric
technique applies to such data.

6. Nonparametric statistical tests are typically much easier to learn
and to apply than are parametric tests.

Disadvantages of Nonparametric Statistical Tests

1. If all the assumptions of the parametric statistical model are in fact
met in the data, and if the measurement is of the required strength, then
nonparametric statistical tests are wasteful of data. The degree of
wastefulness is expressed by the power-efficiency of the nonparametric
test. (It will be remembered that if a nonparametric statistical test has
power-efficiency of, say, 90 per cent, this means that where all the con-
ditions of the parametric test are salisfied the appropriate parametric test
would be just as effective with a sample which is 10 per cent smaller than
that used in the nonparametric analysis.)

2. There are as yet no nonparametric methods for testing interactions
in the analysis of variance model, unless special assumptions are made
about additivity. (Perhaps we should disregard this distinction because
parametric statistical tests are also forced to make the assumption of
additivity. However, the problem of higher-ordered interactions has
yet to be dealt with in the literature of nonparametric methods.)!

Another objection that has been entered against nonparametric
methods is that the tests and their accompanying tables of significant
values have been widely scattered in various publications, many highly

1 After this book had been set in type, a nonparametric test was presented which

contributes to the solution of this problem. See Wilson, K. V. 1956. A distribu-
tion-free test of analysis of variance hypotheses. Psychol, Bull., 63, 96-101,
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specialized, and they have therefore been comparatively inaccessible to
the behavioral scientist. In preparing this book, the writer’s intention
has been to rob that objection of its force. This book attempts to present
all the nonparametric techniques of statistical inference and measures of
association that the behavioral scientist is likely to need, and it gives all
of the tables necessary for the use of these techniques. Although this
text is not exhaustive in its coverage of nonparametric tests—it could not
be without being excessively redundant—enough tests are included in
the chapters which follow to give the behavioral scientist wide latitude in
choosing a nonparametric technique appropriate to his research design
and useful for testing his research hypothesis.

CHAPTER 4

THE ONE-SAMPLE CASE

In this chapter we present those nonparametric statistical tests which
may be used to test a hypothesis which calls for drawing just one sample.
The tests tell us whether the particular sample could have come from
some specified population. These tests are in contrast to the two-sample .
tests, which may be more familiar, which compare two samples and test
whether it is likely that the two came from the same population.

The one-sample test is usually of the goodness-of-fit type. In the
typical case, we draw a random sample and then test the hypothesis that
this sample was drawn from a population with a specified distribution.
Thus the one-sample test can answer questions like these: Is there a
significant difference in location (central tendency) between the sample
and the population? Is there a significant difference between the
observed frequencies and the frequencies we would expect on the basis
of some principle? Is there a significant difference between observed
and expected proportions? Is it reasonable to believe that this sample
has been drawn from a population of a specified shape or form (e.g., nor-
mal, rectangular)? - Is it reasonable to believe that this sample is a ran-
dom sample from some known population?

In the one-sample case a common parametric technique is to apply a
t test to the difference between the observed (sample) mean and the
expected (population) mean. The ¢ test, strictly speaking, assumes that
the observations or scores in the sample have come from a normally dis-
tributed population. The ¢ test also requires that the observations be
measured at least in an interval scale.

There are many sorts of data te which the ¢ test may be inapplicable;
The experimenter may find that (a) the assumptions and requirements
of the ¢ test are unrealistic for his data, (b) it is preferable to avoid making
the assumptions of the ¢ test and thus to gain greater generality for the
conclusions, (¢) the data of his research are inherently in ranks and thus
not amenable to analysis by the ¢ test, (d) the data may be simply clas-
sificatory or enumerative and thus not amenable to analysis by the ¢
test, or (e) he is not interested only in differences in location but rather
wishes to expose any kind of difference whatsoever. In such instances
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