
T O P I C 1 0

S Y S T E M
C O N S T R U C T I O N ,

T E S T I N G A N D
I N S T A L L A T I O N

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives

1. Able to explain various types of system testing and the

usage

2. Able to create system test plan

3. Able to explain how to deploy an information systems

Introduction

ÅProgramming can be the largest single component of any systems

development project in terms of time and cost.

ÅHowever, it also can be the best understood component and

thereforeñexcept in rare circumstances ñ offers the fewest

problems of all aspects of system development.

ÅWhen projects fail, it is usually not because the programmers were

unable to write the programs, but because the analysis, design,

installation, and/or project management were done poorly.

Introduction

ÅSystem construction is the development of all parts of the

system, including the software itself, documentation, and

new operating procedures.

ÅConstruction phase of the Enhanced Unified Process deals

predominantly with:

ðImplementation,

ðTesting, and

ðConfiguration and Change Management.

Implementation & Testing Phase

ÅImplementation obviously deals with programming .

Programming is often seen as the focal point of systems

development.

ðAfter all, systems development is writing programs.

ðIt is the reason we do all the analysis and design.

ÅMany beginning programmers see testing and documentation

as bothersome afterthoughts .

ÅTesting and documentation arenõt fun, so they often receive

less attention than the creative activity of writing programs.

Implementation & Testing Phase

ÅProgramming and testing are very similar to writing and

editing .

ÅThorough testing is the hallmark of professional software

developers.

ÅMost professional organizations devote more time and

money to testing (and the subsequent revision and

retesting) than to writing the programs in the first place.

The Importance of Testing

ÅThe reasons are simple economics : Downtime and failures
caused by software bugs are extremely expensive.

ÅMany large organizations estimate the costs of downtime of
critical applications at $50,000 to $200,000 per hour.

ÅOne serious bug that causes an hour of downtime can cost
more than one yearõs salary of a programmerñand how often
are bugs found and fixed in one hour?

ÅTesting is, therefore, a form of insurance .

ÅOrganizations are willing to spend a lot of time and money to
prevent the possibility of major failures after the system is
installed.

The Configuration and Change Management

ÅThe Configuration and Change Management workflow keeps track

of the state of the evolving system.

ðThe evolving information system comprises a set of artifacts that include, for

example, diagrams, source code, and executable.

ðDuring the development process, these artifacts are modified .

ðThe amount of work, and hence dollars, that goes into the development of the

artifacts is substantial.

ðTherefore, the artifacts themselves should be handled as any expensive asset

would be handled: Access controls must be put into place to safeguard the

artifacts from being stolen or destroyed.

The Configuration and Change Management

ÅThe traceability of the artifacts back through the various artifacts

developed, such as data management layer designs, class diagrams,

package diagrams, and use-case diagrams, to the specific

requirements is also very important .

ÅWithout this traceability, we will not know which aspects of a system

to modify when ñnot ifñ the requirements change

M A N A G I N G
P R O G R A M M I N G

What does project manager do?

ÅAssigning Programmer

ÅCoordinating Activities

ÅManaging the Schedule

ÅManaging Cultural Issues

Assigning Programming

ÅThe project manager first groups together classes that are related

so that each programmer is working on related classes.

ðcohesion should be maximized and coupling should be minimized

ÅThese groups of classes are then assigned to programmers.

ÅA good place to start is to look at the package diagrams .

ðThe idea of packages as a way to group UML artifact (use case, class

diagram, etc.) together to make them easier to read and to keep the

models at a reasonable level of complexity .

Example

Package

Diagram

Example

Package

Diagram

Assigning Programming

ÅOne of the rules of systems development is that the more programmers

who are involved in a project, the longer the system will take to build .

ÅThis is because as the size of the programming team increases, the need

for coordination increases exponentially, and the more coordination

required, the less time programmers can spend actually writing systems.

ÅThe best size is the smallest possible programming team.

ÅWhen projects are so complex that they require a large team, the best

strategy is to try to break the project into a series of smaller parts

that can function as independently as possible.

Coordinating Activities

1. Have a weekly project meeting to discuss any changes to the

system that have arisen during the past weekñor any issues that

have come up.

2. Create and follow standards that can range from formal rules for

naming fi les, to forms that must be completed when goals are

reached, to programming guidelines.

3. Set up three areas in which programmers can work: a

development area, a testing area, and a production area.

Coordinating Activities

4. Manage change control , the action of coordinating a system

as it changes through construction.

ðBy keeping track of which programmer changes which classes and packages by

using a program log.

ðThe log is merely a form on which programmers sign out classes and packages

to write and sign in when they are completed.

ðBoth the programming areas and program log help the analysts understand

exactly who has worked on what and the systemõs current status.

ðWithout these techniques, files can be put into production without the proper

testing (e.g., two programmers can start working on the same class or package

at the same time).

5. Utilize CASE tool .

Managing the Schedule

ÅThe time estimates that were produced during project identification

and refined during analysis and design almost always need to be

refined as the project progresses during construction because it is

virtually impossible to develop an exact assessment of the projectõs

schedule.

ðIf a program module takes longer to develop than expected, then

the prudent response is to move the expected completion date

later by the same amount.

ðManage scope creep

Managing Cultural Issues (Hall & Hofstede)

1. Speed of messages

2. Context

3. Time

4. Power Distance

5. Uncertainty avoidance

6. Individualism vs collectivism

7. Masculinity vs femininity

8. Long vs short term orientation

D E V E L O P I N G
D O C U M E N T A T I O N

Basic Types of Documentation

There are two fundamentally different types of

documentation :

1. system documentation

2. and user documentation .

System Documentation

ÅSystem documentation is intended to help programmers

and systems analysts understand the application software

and enable them to build it or maintain it after the system is

installed.

ÅSystem documentation is largely a by-product of the

systems analysis and design process and is created as the

project unfolds.

User Documentation

ÅUser documentation (such as userõs manuals, training manuals, and online help

systems) is designed to help the user operate the system.

ð User documentation is often left until the end of the project, which is a

dangerous strategy.

ð Developing good documentation takes longer than many people expect

because it requires much more than simply writing a few pages Ą requires

designing the documents, writing the text, editing the documents, and testing

them.

ð For good-quality documentation, this process usually takes about three hours

per page (single-spaced) for paper-based documentation or two hours per

screen for online documentation .

Types of User Documentation

1. Reference documents also called the help system) are designed to

be used when the user needs to learn how to perform a specific

function (e.g., updating a field, adding a new record).

Å Often people read reference information when they have tried and failed to perform

the function ; writing reference documents requires special care because the user is

often impatient or frustrated when he or she begins to read them.

2. Procedures manuals describe how to perform business tasks (e.g.,

printing a monthly report, taking a customer order).

Å Each item in the procedures manual typically guides the user through a task that

requires several functions or steps in the system. Therefore, each entry is typically

much longer than an entry in a reference document.

Types of User Documentation

3. Tutorials ñ obviously ñ teach people how to use major

components of a system (e.g., an introduction to the basic

operations of the system).

Å Each entry in the tutorial is typically longer still than the entries in

procedures manuals, and the entries are usually designed to be read in

sequence (whereas entries in reference documents and procedures manuals

are designed to be read individually).

Designing

Documentation

Structure

D E S I G N I N G
S Y S T E M
T E S T S

Designing Tests

ÅTesting is the process of exercising a program with the specific intent

of finding errors prior to delivery to the end user.

ÅThe purpose of testing is not to demonstrate that the system is free

of errors , but to uncover as many errors as feasible .

ÅTesting is more critical to object-oriented systems than to systems

developed in the past. Based on encapsulation (and information

hiding), polymorphism (and dynamic binding), inheritance, reuse, and

the actual object-oriented products, thorough testing is much more

difficult and critical.

What Testing Shows

Testing Myths

1. Testing is too expensive.

2. Testing is time consuming.

3. Testing cannot be started if the product is not fully developed.

4. Complete Testing is Possible.

5. If the software is tested then it must be bug free.

6. Missed defects are due to Testers.

7. Testers should be responsible for the quality of a product.

8. Any one can test a Software application.

9. A testerõs task is only to find bugs.

Strategic Approach

Å To perform effective testing, you should conduct effective

technical reviews . By doing this, many errors will be eliminated

before testing commences.

Å Testing begins at the component level and works "outward"

toward the integration of the entire computer-based system.

Å Testing is conducted by the developer of the systems and (for

large projects) an independent test group .

Å Testing and debugging are different activities , but debugging

must be accommodated in any testing strategy.

Verification and Validation

Verification refers to the set of tasks that ensure that the

systems correctly implements a specific function.

Verification: "Are we building the product right?"

Validation refers to a different set of tasks that ensure that the

systems that has been built is traceable to customer requirements.

Boehm [Boe81] states this another way:

Validation: "Are we building the right product?"

Who Tests the Software?

Developer Independent Tester

Understand the system,

but will test ògentlyó and,

is driven by òdeliveryó

Must learn about the system,

but will attempt to break it and,

it is driven by quality

Testing Strategy

ÅWe begin by òtesting-in -the -smalló and move toward

òtesting-in-the -largeó

ÅFor OO systems

ðOur focus when òtesting in the smalló changes from an

individual module (the conventional view) to an OO class that

encompasses attributes and operations and implies

communication and collaboration

Testing Strategy

1. Specify product requirements in a quantifiable manner

long before testing commences.

2. State testing objectives explicitly.

3. Understand the users of the systems and develop a profile

for each user category.

4. Develop a testing plan that emphasizes òrapid cycle

testing.ó

Testing Strategy

1. Build òrobustó system that is designed to test itself

2. Use effective technical reviews as a filter prior to testing

3. Conduct technical reviews to assess the test strategy and

test cases themselves.

4. Develop a continuous improvement approach for the

testing process.

Testing and Object Oriented Systems Issue

1. Encapsulation and Information Hiding

2. Polymorphism and Dynamic Binding

3. Inheritance

4. Re-use

Testing and Object Oriented Systems Issue

ÅEncapsulation and Information Hiding

ðEncapsulation: Mechanism that combines the processes and data into a single

object.

ðInformation hiding : suggests only the information required to use an object be

available outside the object

ÅPolymorphism and Dynamic Binding

ðPolymorphism: having the ability to take several forms, so OO systems can send

the same message to a set of objects, which can be interpreted differently by

different classes of objects.

ðDynamic binding : the ability of OO systems to defer the data typing of objects

to run time

Testing and Object Oriented Systems Issue

ÅInheritance

ðAllows developers to define classes incrementally by reusing classes defined

previously as the basis for new classes.

ÅRe-use

Encapsulation and Information Hiding (1)

ÅEncapsulation and information hiding allow processes and data to be

combined to create holistic entities (i.e. Objects).

ÅHowever, business process is distributed over a set of collaborating

classes and contained in the methods of those classes.

ÅSo, testers need to know the effect that business process has on a

system by looking at the state changes that take place in the system

Encapsulation and Information Hiding (2)

ÅA second issue is the definition of òunitó for unit testing.

ðIt might be package, class, or method

ÅWhat is òthe unitó to be tested?

ðIn traditional approaches, the answer would be the process that is contained in

a function .

ðHowever, the process in OO systems is distributed over a set of classes.

ðTherefore, testing individual methods makes no sense, as the answer is the

class.

Encapsulation and Information Hiding (3)

ÅThird issue raised is the impact on integration testing

ÅIn this case, objects can be aggregated to form aggregate object.

ÅClasses can be grouped together in defferent ways to form

collaborations .

ðClass A + B + C Ą Business Process A

ðClass A + B + D Ą Business Process B

ðClass A + C + D Ą Buisiness Process C

ÅHow does we effectively do integration testing?

Polymorphism and Dynamic Binding (1)

ÅImpact on both unit and integration testing.

ÅBecause an individual business process is implemented through a set

of methods distributed over a set of objects, the unit test makes no

sense at the method level.

ÅHowever, with polymorphism and dynamic binding, the same method

(a small part of the overall business process) can be implemented in

many different object.

ÅTherefore, testing individual implementations of methods makes no

sense.

ÅSo, the unit test that make sense to test is the class

Polymorphism and Dynamic Binding (2)

ÅFurthermore, dynamic binding makes it impossible to know which

implementation is going to be executed until the system does it.

ÅTherefore, integration testing becomes very challenging.

Inheritance

ÅThrough the use of inheritance, bugs can be propagated

instantaneously from a superclass to all its direct and indirect

subclasses.

ÅHowever, the tests that are applicable to a superclass are also

applicable to all its subclasses.

ÅAll these issues impact unit and integration testing.

Re-use

ÅOn the surface, reuse should decrease the amount of testing required.

ÅHowever, each time a class is used in a different context, the class

must be tested again.

ÅTherefore, anytime a class library, framework, or component is used,

unit testing and integration testing are important .

Four General Stages of Tests

1. Unit tests

2. Integration tests

3. System test

4. Acceptance test

Error-Discovery Rates for Different Stages of

Tests

Unit Tests
 focuses veriþcation effort on the

smallest unit of system designñthe

system component or module.

Unit Tests

Unit Tests

Integration tests

Å "If they all work individually, why do you doubt that they'll work

when we put them together?ó

ÅIntegration testing is a systematic technique for constructing the

program structure while at the same time conducting tests to uncover

errors associated with interfacing.

Integration tests

ÅThe òBig Bangó approach

ÅAll components are combined in advance.

The entire program is tested as a whole.

ÅChaos usually becomes the result! A set of

errors is encountered.

ÅAn incremental construction strategy

ðThe program is constructed and tested in

small increments, where errors are easier to

isolate and correct

Integration tests

System tests

ÅSystem tests are usually conducted by the systems analysts to ensure

that all classes work together without error.

ÅSystem testing is similar to integration testing but is much broader in

scope.

ÅWhereas integration testing focuses on whether the classes work

together without error, system tests examine how well the system

meets business requirements and its usability, security, and

performance under heavy load.

System tests

Acceptance tests

ÅAcceptance test is done primarily by the users with support from the

project team.

ÅThe goal is to confirm that system is complete, meets the business

needs that prompted the system to be developed, and is acceptable

to users.

Acceptance tests

C H A N G E
M A N A G E M E N T

Implementing Change

ÅManaging the change to a new systemñwhether it is computerized

or notñis one of the most difficult tasks in any organization

(Machiavelli).

ÅBecause of the challenges involved, most organizations begin

developing their conversion and change management plans while the

programmers are still developing the software.

Cultural Issues and Information Technology

Adoption

1. Speed of messages

2. Context

3. Time

4. Power Distance

5. Uncertainty avoidance

6. Individualism vs collectivism

7. Masculinity vs femininity

8. Long vs short term orientation

1. Speed of messages

ÅSpeed of messages has implications for the development of

documentation and training approaches.

ÅIn a culture that values òdeepó content, so that members of the

culture can take their time to thoroughly understand the new system,

simply providing an online help system is not going to be sufficient

to ensure the successful adoption of the new information system.

ÅHowever, in a culture that prefers òfastó messages, an online help

system could be sufficient.

2. Context

ÅContext also affects the adoption and deployment of a new system.

ÅIn high-context cultures, it is expected that the new information

system will be placed into the entire context of the enterprise wide

system.

ÅMembers of this type of society expect to be able to understand

exactly where the system fits into the firmõs overall picture.

ÅLike the speed of messages dimension, this affects the training

approach used and the documentation developed

3. Time

ÅTime can also effect the adoption and deployment of a new system.

ÅIn a polychronic time culture, the training could need to be spread

out over a longer period of time, when compared to a monochronic

time culture.

ÅIn a monochromic time culture, interruptions would be considered

rude. Consequently, training could be accomplished in a small set of

intense sessions.

ÅHowever, with a polychronic time culture, because interruptions may

occur frequently, maximum flexibility in setting up the training

sessions may be necessary

4. Power distance

ÅPower distance addresses how power issues are dealt with in the culture.

ðFor example, if a superior in an organization has an incorrect belief about an

important issue, can a subordinate point out this error?

ðIn some cultures, the answer is a resounding no.

ÅConsequently, this dimension could have major ramifications for the successful

deployment of an information system.

ðFor example, in a culture with a high power distance, the deployment of a new

information system is dependent on the impression of the most important

stakeholder. Therefore, much care must be taken to ensure that this stakeholder

is pleased with the system.

ðOtherwise, it might never be used.

5. Uncertainty avoidance

ÅUncertainty avoidance is based on the degree to which the culture depends on

rules for direction, how well individuals in the culture handle stress, and the

importance of employment stability.

ÅFor example, in a high-uncertainty-avoidance culture, the use of detailed

procedures manuals and good training can reduce the uncertainty in adopting the

new system.

6. Individualism versus collectivism

ÅIndividualism versus collectivism is based on the level of emphasis the culture

places on the individual or the collective.

ÅThe relationship between the individual and the group is important for the success

of an information system.

ÅDepending on the cultureõs orientation, the success of an information system being

transitioned into production can depend on whether the focus of the information

system will benefit the individual or the group.

7. Masculinity versus femininity

ÅMasculinity versus femininity addresses how well masculine and feminine

characteristics are valued by the culture.

ÅSome of the differences that could affect the adoption of an information system

include employee motivational issues.

ÅIn a masculine culture, motivation would be based on advancement, earnings, and

training, whereas in a feminine culture, motivations would include friendly

atmosphere, physical conditions, and cooperation.

ÅDepending on how the culture views this dimension, different motivations might

need to be used to increase the likelihood of the information system being

successfully deployed.

8. Long-versus short-term orientation

Long- versus short-term orientation, deals with how the culture views the past and

the future. In East Asia, long-term thinking is highly respected, whereas in North

America and Europe, short-term profits and the current stock price seem to be the

only things that matter.

Å For example, if the local culture views success only in a short-term manner, then any new

information system that is deployed to support one department of an organization may

give that department a competitive advantage over other departments in the short run.

Å If only short-run measures are used to judge the success of a department, then it would be

in the interest of the other departments to fight the successful deployment of the

information system.

Å However, if a longer-run perspective is the norm, then the other departments could be

convinced to support the new information system because they could have new supportive

information systems in the future

M I G R A T I O N P L A N

Migration Plan

ÅUsers are moved from using the as-is business processes and computer programs

to the to-be business processes and programs.

ÅThe migration plan specifies what activities will be performed when and by whom

and includes both technical aspects (such as installing hardware and software and

converting data from the as-is system to the to-be system) and organizational

aspects (such as training and motivating the users to embrace the new system).

ÅConversion is the technical process by which a new system replaces an old system.

Migration Plan

Conversion Cube

