
T O P I C 5

S T R U C T U R A L
M O D E L L I N G

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives

1. Able to explain the rules and components of class diagram, CRC

Cards, object diagrams, and other techniques.

2. Able to explain the process to create class diagram, CRC Cards,

object diagrams, and other techniques.

3. Able to explain the relationship between structural and

functional model (usecase diagram)

4. Able to validate and verify the structural model.

Session Outline

1. Structural Models

2. Object Identification

3. CRC Cards

4. Class Diagrams

5. Object Diagrams

6. Verifying & Validating the Structural Model

Where are we?

• During analysis, analysts create business process and functional

models to represent how the business system will behave externally

(last week – use cases modeling)

• At the same time, analysts need to understand the information that

is used and created by the business system.

– We discuss now the structural modeling of how the objects

underlying the behavior modeled in the business process and

functional models are organized and presented.

Overview

• Requirements gathering and analysis (Week #4)

– Deliver System Proposal

• It’s a proposed logical information systems:

– functional requirements: relates to a process or data

– non-functional requirements: relates to performance or usability

– Nonfunctional requirements can influence functional, structural,

and behavioral model

– Deliver precise list of requirements that can be used as inputs

to the rest of analysis for creating functional, structural, and

behavioral model.

Overview

• List of functional requirements are input to Functional Model with

Use Cases as core building blocks—focus on process (Week #5)

• A structural or conceptual model describes the structure of the

data that supports the business processes in an organization—

focus on data (Week #6)

1 . 1
S T R U C T U R A L

M O D E L S
(C O N C E P T)

Introduction

• A structural or conceptual model describes the structure of the data

that supports the business processes in an organization

• The structure of data used in the system is represented through CRD

cards, class diagrams, and object diagrams

• Constructing the structural model is an iterative process involving:

textual analysis, brainstorming objects, role playing, creating the

diagrams, and incorporating useful patterns

• Verifying & Validating the Structural Model ensure the consistency of

the Structural Model

• Simplifying the class diagram is often necessary (view)

Introduction

• All object-oriented systems development approaches are use-case

driven, architecture-centric, and iterative and incremental. Use cases

form the foundation on which the business information system is

created.

• From an architecture-centric perspective, structural modeling supports

the creation of an internal structural or static view of a business

information system in that it shows how the system is structured to

support the underlying business processes.

Introduction

• Finally, as with business process and functional modeling, you will find

that you will need to not only iterate across the structural models

(described in this chapter), but you will also have to iterate across all

three architectural views (functional, structural, and behavioral) to fully

capture and represent the requirements for a business information

system.

What is a Structural Model?

• A structural model is a formal way of representing the objects that are

used and created by a business system. It illustrates people, places,

or things about which information is captured and how they are

related to one another.

• The structural model is drawn using an iterative process in which the

model becomes more detailed and less conceptual over time.

What is a Structural Model?

• In analysis, analysts draw a conceptual model, which shows the

logical organization of the objects without indicating how the objects

are stored, created, or manipulated.

• In design, analysts evolve the conceptual structural model into a

design model that reflects how the objects will be organized in

databases and software.

• At this point, the model is checked for redundancy, and the analysts

investigate ways to make the objects easy to retrieve.

Structural Model

Main goal: to discover the key data contained in the problem domain

and to build a structural model of the objects (static view).

Problem Domain

Solution Domain

Structural

Modeling

Purpose of Structural Models

• Every time a systems analyst encounters a new problem to solve, the

analyst must learn the underlying problem domain. The goal of the

analyst is to discover the key objects contained in the problem domain

and to build a structural model.

• One of the primary purposes of the structural model is to create a

vocabulary that can be used by the analyst and the users to

communicate effectively.

– Structural models represent the things, ideas, or concepts contained in the

domain of the problem. They also allow the representation of the relationships

among the things, ideas, or concepts.

Purpose of Structural Models

• It is important to remember that at this stage of development, the

structural model does not represent software components or

classes in an object-oriented programming language, even though

the structural model does contain analysis classes, attributes,

operations, and the relationships among the analysis classes.

• The refinement of these initial classes into programming-level objects

comes later.

• The structural model at this point should represent the responsibilities

of each class and the collaborations among the classes.

Purpose of Structural Models

• Typically, structural models are depicted using CRC cards, class

diagrams, and, in some cases, object diagrams. However, before

describing CRC cards, class diagrams, and object diagrams, we

describe the basic elements of structural models: (1) classes, (2)

attributes, (3) operations, and (4) relationships.

Classes, Attributes, & Operations

• Classes

•Templates for instances of

people, places, or things

• Attributes

•Properties that describe the

state of an instance of a class (an

object)

• Operations

•Actions or functions that a class

can perform

Classes

• A class is a general template that we use to create specific instances, or

objects, in the problem domain. All objects of a given class are identical

in structure and behavior but contain different data in their attributes.

• There are two general kinds of classes of interest during analysis:

concrete and abstract.

– Normally, when an analyst describes the application domain classes, he or she is

referring to concrete classes; that is, concrete classes are used to create objects.

– Abstract classes do not actually exist in the real world; they are simply useful

abstractions.

Classes

• For example, from an employee class and a customer class, we may

identify a generalization of the two classes and name the abstract class

person.

• We might not actually instantiate the person class in the system itself,

instead creating and using only employees and customers.

Classes

• A second classification of classes is the type of real-world thing that a

class represents.

• There are domain classes, user-interface classes, data structure classes,

file structure classes, operating environment classes, document classes,

and various types of multimedia classes.

• At this point in the development of our evolving system, we are

interested only in domain classes.

• Later in design and implementation, the other types of classes become

more relevant.

Attributes

• An attribute of an analysis class represents a piece of information

that is relevant to the description of the class within the application

domain of the problem being investigated. An attribute contains

information the analyst or user feels the system should keep track of.

• For example, a possible relevant attribute of an employee class is

employee name, whereas one that might not be as relevant is hair

color. Both describe something about an employee, but hair color is

probably not all that useful for most business applications.

Attributes

• Finally, only attributes that are primitive or atomic types (i.e.,

integers, strings, doubles, date, time, Boolean, etc.) should be added.

Most complex or compound attributes are really placeholders for

relationships between classes (see next slides).

Operations

• The behavior of an analysis class is defined in an operation or service. In later

phases, the operations are converted to methods.

• Like attributes, only problem domain–specific operations that are relevant to the

problem being investigated should be considered.

• For example, it is normally required that classes provide means of creating

instances, deleting instances, accessing individual attribute values, setting

individual attribute values, accessing individual relationship values, and removing

individual relationship values. However, at this point in the development of the

evolving system, the analyst should avoid cluttering up the definition of the class

with these basic types of operations and focus only on relevant problem domain–

specific operations.

• Action that instances/objects can take focus on relevant problem-specific

operations (at this point)

Relationships

• Describe how classes relate to one another

• Three basic types in UML

 Generalization

• Enables inheritance of attributes and operations

• Represents relationships that are ―a-kind-of‖

 Aggregation

• Relates parts to wholes or assemblies

• Represents relationships that are ―a-part-of‖ or ―has-parts‖

 Association

• Miscellaneous relationships between classes

• Usually a weaker form of aggregation

Generalization (a-kind-of relationship)

• The generalization abstraction enables the analyst to create classes

that inherit attributes and operations of other classes.

– A superclass contains basic attributes and operations that will be used in

several subclasses.

– The subclasses inherit the attributes and operations of their superclass and

can also contain attributes and operations that are unique just to them.

– In this way, the analyst can reduce the redundancy in the class definitions

– For example, a customer class and an employee class can be generalized into a

person class by extracting the attributes and operations both have in common

and placing them into the new superclass, person. Thus, an employee is a-

kind-of person.

Generalization (specialization & hierarchy)

• The analyst also can use the opposite of generalization:

Specialization uncovers additional classes by allowing new

subclasses to be created from an existing class.

– For example, an employee class can be specialized into a secretary class and an

engineer class.

• Furthermore, generalization relationships between classes can be

combined to form generalization hierarchies.

– Based on the previous examples, a secretary class and an engineer class can be

subclasses of an employee class, which in turn could be a subclass of a person

class.

– This would be read as a secretary and an engineer are a-kind-of employee

and a customer and an employee are a-kind-of person.

Generalization (substitutability)

• To ensure that the semantics of the subclasses are maintained, the

analyst should apply the principle of substitutability.

• By this we mean that the subclass should be capable of substituting

for the superclass anywhere that uses the superclass (e.g., anywhere

we use the employee superclass, we could also logically use its

secretary subclass).

• By focusing on the a-kind-of interpretation of the generalization

relationship, the principle of substitutability is applied.

Aggregation (a-part-of / has-parts)

• Generally speaking, all aggregation relationships relate parts to

wholes or assemblies.

– For example, a door is a-part-of a car, an employee is a-part-of a department,

or a department is a-part-of an organization.

• Like the generalization relationship, aggregation relationships can

be combined into aggregation hierarchies.

– For example, a piston is a-part-of an engine, and an engine is a-part-of a car.

Aggregation (a-part-of / has-parts)

• Aggregation relationships are bidirectional. The flip side of

aggregation is decomposition. The analyst can use decomposition to

uncover parts of a class that should be modeled separately.

– For example, if a door and an engine are a-part-of a car, then a car has-parts

door and engine. The analyst can bounce around between the various parts to

uncover new parts. For example, the analyst can ask, What other parts are

there to a car? or To which other assemblies can a door belong?

Association (miscellaneous)

• There are other types of relationships that do not fit neatly into a

generalization (a-kind-of) or aggregation (a-part-of) framework.

• Technically speaking, these relationships are usually a weaker form

of the aggregation relationship.

– For example, a patient schedules an appointment. It could be argued that a

patient is a-part-of an appointment.

• However, there is a clear semantic difference between this type of

relationship and one that models the relationship between doors

and cars or even workers and unions. Thus, they are simply

considered to be associations between instances of classes.

1 . 1
O B J E C T

I D E N T I F I C A T I O N

Introduction

• The 4 (four) most common approaches for object identification are

1. textual analysis,

2. brainstorming,

3. common object lists, and

4. patterns.

• Most analysts use a combination of these techniques to make sure

that no important objects and object attributes, operations, and

relationships have been overlooked.

Textual Analysis

• Review the use-case diagrams and examining the text in the use-

case descriptions to identify potential objects, attributes, operations,

and relationships.

• The nouns in the use case suggest possible classes, and the verbs

suggest possible operations.

• This figure presents a summary of useful guidelines.

• The textual analysis of use-case descriptions has been criticized as

being too simple, but because its primary purpose is to create an

initial rough-cut structural model, its simplicity is a major advantage.

Textual Analysis

Textual Analysis

• For example, if we applied these rules to the Make Old Patient Appt

use case:

– We can easily identify potential objects for an old patient, doctor,

appointment, patient, office, receptionist, name, address, patient

information, payment, date, and time.

– We also can easily identify potential operations, for example, patient

contacts office, makes a new appointment, cancels an existing

appointment, changes an existing appointment, matches requested

appointment times and dates with requested times and dates, and finds

current appointment.

Textual Analysis

Brainstorming

• Essentially, in this context, brainstorming is a process that a set of

individuals sitting around a table suggest potential classes that could

be useful for the problem under consideration.

• Typically, a brainstorming session is kicked off by a facilitator who

asks the set of individuals to address a specific question or statement

that frames the session.

– For example, using the appointment problem described previously, the

facilitator could ask the development team and users to think about their

experiences of making appointments and to identify candidate classes based

on their past experiences.

Brainstorming

• Notice that this approach does not use the functional models

developed earlier.

– It simply asks the participants to identify the objects with which they have

interacted. For example, a potential set of objects that come to mind are

doctors, nurses, receptionists, appointment, illness, treatment, prescriptions,

insurance card, and medical records.

– Once a sufficient number of candidate objects have been identified, the

participants should discuss and select which of the candidate objects should

be considered further.

– Once these have been identified, further brainstorming can take place to

identify potential attributes, operations, and relationships for each of the

identified objects.

Principles to Guide a Brainstorming Session by

Bellin and Simone

• First, all suggestions should be taken seriously. At this point in the

development of the system, it is much better to have to delete

something later than to accidentally leave something critical out.

• Second, all participants should begin thinking fast and furiously.

After all ideas are out on the proverbial table, then the participants

can be encouraged to ponder the candidate classes they have

identified.

Principles to Guide a Brainstorming Session by

Bellin and Simone

• Third, the facilitator must manage the fast and furious thinking process.

Otherwise, the process will be chaotic. Furthermore, the facilitator should

ensure that all participants are involved and that a few participants do not

dominate the process. To get the most complete view of the problem, we

suggest using a round-robin approach wherein participants take turns

suggesting candidate classes. Another approach is to use an electronic

brainstorming tool that supports anonymity.

• Fourth, the facilitator can use humor to break the ice so that all participants

can feel comfortable in making suggestions

• Seems having similarity with JAD?

• A common object list is simply a list of objects common to the

business domain of the system.

• Several categories of objects have been found to help the analyst in

creating the list, such as physical or tangible things, incidents, roles,

and interactions.

– Analysts should first look for physical, or tangible, things in the business

domain. These could include books, desks, chairs, and office equipment.

Normally, these types of objects are the easiest to identify.

– Incidents are events that occur in the business domain, such as meetings,

flights, performances, or accidents.

Common Object Lists

– Reviewing the use cases can readily identify the roles that the people play in

the problem, such as doctor, nurse, patient, or receptionist.

– Typically, an interaction is a transaction that takes place in the business

domain, such as a sales transaction.

• Other types of objects that can be identified including places,

containers, organizations, business records, catalogs, and policies

Common Object Lists

• The idea of using patterns is a relatively new area in object-oriented systems

development. There have been many definitions of exactly what a pattern is.

• From our perspective, a pattern is simply a useful group of collaborating

classes that provide a solution to a commonly occurring problem. Because

patterns provide a solution to commonly occurring problems, they are

reusable.

• According to Alexander and his colleagues, it is possible to make very

sophisticated buildings by stringing together commonly found patterns,

rather than creating entirely new concepts and designs.

• In a similar manner, it is possible to put together commonly found object-

oriented patterns to form elegant object-oriented information systems.

Patterns

• For example, many business transactions involve the same types of

objects and interactions. Virtually all transactions would require a

transaction class, a transaction line item class, an item class, a location

class, and a participant class. By reusing these existing patterns of

classes, we can more quickly and more completely define the system

than if we start with a blank piece of paper.

• If we are developing a business information system in one of these

business domains, then the patterns developed for that domain may

be a very useful starting point in identifying needed classes and their

attributes, operations, and relationships.

Patterns

Useful Patterns

Samples of Pattern

Samples of Pattern (Integration)

1 . 2

C L A S S -

R E S P O N S I B I L I T Y

- C O L L A B O R A T I O N

(C R C) C A R D S

• In addition to the object identification approaches described earlier

(textual analysis, brainstorming, common object lists, and patterns),

CRC cards can be used in a role-playing exercise that has been shown

to be useful in discovering additional objects, attributes, relationships,

and operations.

Introduction

• Responsibilities of a class can be broken into two separate

types: knowing and doing.

– Knowing responsibilities are those things that an instance of a class

must be capable of knowing.

• An instance of a class typically knows the values of its attributes and its

relationships.

– Doing responsibilities are those things that an instance of a class

must be capable of doing.

• In this case, an instance of a class can execute its operations or it can

request a second instance, which it knows about, to execute one of its

operations on behalf of the first instance

Responsibilities

• The structural model describes the objects necessary to support the

business processes modeled by the use cases. Most use cases involve

a set of several classes, not just one class.

• These classes form collaborations. Collaborations allow the analyst to

think in terms of clients, servers, and contracts.

– A client object is an instance of a class that sends a request to an instance of

another class for an operation to be executed.

– A server object is the instance that receives the request from the client object.

– A contract formalizes the interactions between the client and server objects.

• Collaboration

– Objects working together to service a request

Collaborations

• The idea of class responsibilities and client–server–contract collaborations can be

used to help identify the classes, along with the attributes, operations, and

relationships, involved with a use case.

• Anthropomorphism—pretending that the classes have human characteristics.

• Members of the development team can either ask questions of themselves or be

asked questions by other members of the team. Typically the questions asked are of

the form:

– Who or what are you?

– What do you know?

– What can you do?

• The answers to the questions are then used to add detail to the evolving CRC cards.

CRC (Class-Responsibility- Collaboration)

• For example, in the appointment problem, a member of the team can

pretend that he or she is an appointment. In this case, the

appointment would answer that he or she knows about the doctor

and patient who participate in the appointment and they would know

the date and time of the appointment.

• Furthermore, an appointment would have to know how to create

itself, delete itself, and to possibly change different aspects of itself. In

some cases, this approach will uncover additional objects that have to

be added to the evolving structural model.

Example of Anthropomorphism

A CRC Card

• Role-playing is very useful in testing the fidelity of the evolving

structural model

• Technically speaking, the members of the team perform the different

steps associated with a specific scenario of a use case.

• Consists of 4 steps:

1. Review Use Cases

2. Identify Relevant Actors and Objects

3. Role-Play Scenario

4. Repeat Steps 1 to 3

Role-Playing CRC Cards with Use Cases

• This allows the team to pick a specific use case to role-play.

• Even though it is tempting to try to complete as many use cases as

possible in a short time, the team should not choose the easiest use

cases first.

• Instead, at this point in the development of the system, the team

should choose the use case that is the most important, the most

complex, or the least understood.

Role-Playing CRC Cards with Use Cases

• Each role is associated with either an

actor or an object. To choose the

relevant objects, the team reviews

each of the CRC cards and picks the

ones that are associated with the

chosen use case.

• For example, we see that the CRC

card that represents the Old Patient

class is associated with Use Case

number 2.

Role-Playing CRC Cards with Use Cases --

Second Step – Identify Relevant Actors and

Objects

• So if we were going to role-play the Make Old

Patient Appt use case, we would need to

include the Old Patient CRC card.

• By reviewing the use-case description, we can

easily identify the Old Patient and Doctor

actors (see Primary Actor and Stakeholders

section of the use case description).

• By reading the event section of the use-case

description, we identify the internal actor role

of Receptionist.

• After identifying all of the relevant roles, we

assign each one to a different member of the

team.

Role-Playing CRC Cards with

Use Cases -- Second Step –

Identify Relevant Actors and

Objects

• Each team member must pretend that he or she

is an instance of the role assigned to him or her.

• For example, if a team member was assigned the

role of the Receptionist, then he or she would

have to be able to perform the different steps in

the scenario associated with the Receptionist.

• In the case of the change appointment scenario,

this would include steps 2, 5, 6, S-3, S-1, and S-

2.

• However, when this scenario is performed (role-

played), it would be discovered that steps 1, 3,

and 4 were incomplete… continued in next slides

Role-Playing CRC Cards with

Use Cases -- Third Step –

Role-Play Scenario

• For example, in Step 1, what actually occurs? Does the Patient make

a phone call? If so, who answers the phone?

• In other words, a lot of information contained in the use-case

description is only identified in an implicit, not explicit, manner.

• When the information is not identified explicitly, there is a lot of

room for interpretation, which requires the team members to make

assumptions.

• It is much better to remove the need to make an assumption by

making each step explicit.

Role-Playing CRC Cards with Use Cases --

Third Step – Role-Play Scenario

• In this case, Step 1 of the Normal Flow of Events should be

modified. Once the step has been fixed, the scenario is tried

again. This process is repeated until the scenario can be executed

to a successful conclusion. Once the scenario has successfully

concluded, the next scenario is performed. This is repeated until all

of the scenarios of the use case can be performed successfully.

Role-Playing CRC Cards with Use Cases --

Third Step – Role-Play Scenario

• The fourth step is to simply repeat steps 1 through 3 for the

remaining use cases.

Role-Playing CRC Cards with Use Cases --

Fourth Step – Repeat Steps 1 to 3

• Create a CRC card for each of the following classes:

– Movie (title, producer, length, director, genre)

– Ticket (price, adult or child, showtime, movie)

– Patron (name, adult or child, age)

Your Turn! A simple task

1 . 3
C L A S S

D I A G R A M S

• A class diagram is a static model that shows the classes and the

relationships among classes that remain constant in the system over

time.

• The class diagram depicts classes, which include both behaviors and

states, with the relationships between the classes.

– The main building block of a class diagram is the class, which stores and

manages information in the system.

• The following sections present the elements of the class diagram,

different approaches that can be used to simplify a class diagram, and

an alternative structure diagram: the object diagram.

Introduction

Example Class Diagram

Complete Class Syntax

1. A class

2. An attribute

3. An operation

4. An association

5. A generalization

6. An aggregation

7. A composition

Each will be described in details

in next slides …

• During analysis, classes refer to the people, places, and things about which the

system will capture information. Later, during design and implementation, classes

can refer to implementation-specific artifacts such as windows, forms, and other

objects used to build the system.

• We can see that the classes identified earlier, such as Participant, Doctor, Patient,

Receptionist, Medical History, Appointment, and Symptom, are included in the

previous figure.

Classes

• Attributes are properties of the class about which we want to capture information

• Notice that the Participant class in previous figure contains the attributes:

– lastname, firstname, address, phone, and birthdate.

• At times, you might want to store derived attributes

– attributes that can be calculated or derived;

– these special attributes are denoted by placing a slash (/) before the attribute’s name.

• E.g., the person class contains a derived attribute called /age, which can be derived

by subtracting the patient’s birth date from the current date.

Attributes (of Classes

• Visibility relates to the level of information hiding to be enforced for

the attribute. The visibility of an attribute can be public (+), protected

(#), or private (−).

– A public attribute is one that is not hidden from any other object. As such, other

objects can modify its value.

– A protected attribute is one that is hidden from all other classes except its

immediate subclasses.

– A private attribute is one that is hidden from all other classes.

• The default visibility for an attribute is normally private.

Attributes (of Classes

• Operations are actions or functions that a class can perform.

• The functions that are available to all classes (e.g., create a new instance, return a

value for a particular attribute, set a value for a particular attribute, delete an

instance) are not explicitly shown within the class rectangle.

• Instead, only operations unique to the class are included,

• E.g., the cancel without notice operation in the Appointment class and the calculate

last visit operation in the Patient class in the previous figure.

Operations (of Classes)

• Notice that both the operations are followed by parentheses, which

contain the parameter(s) needed by the operation.

• If an operation has no parameters, the parentheses are still shown but

are empty.

• As with attributes, the visibility of an operation can be designated

public, protected, or private.

• The default visibility for an operation is normally public.

Operations (of Classes)

• There are four kinds of operations that a class can contain:

constructor, query, update, and destructor.

– A constructor operation creates a new instance of a class.

• For example, the patient class may have a method called insert (), which

creates a new patient instance as patients are entered into the system.

• If an operation implements one of the basic functions (e.g., create a new

instance), it is normally not explicitly shown on the class diagram, so

typically we do not see constructor methods explicitly on the class diagram.

Operations (of Classes)

– A query operation makes information about the state of an object

available to other objects, but it does not alter the object in any

way.

• For instance, the calculate last visit () operation that determines when a

patient last visited the doctor’s office will result in the object’s being

accessed by the system, but it will not make any change to its information.

• If a query method merely asks for information from attributes in the class

(e.g., a patient’s name, address, phone), then it is not shown on the diagram

because we assume that all objects have operations that produce the

values of their attributes.

Operations (of Classes)

– An update operation changes the value of some or all the object’s

attributes, which may result in a change in the object’s state.

• Consider changing the status of a patient from new to current with a

method called change status() or associating a patient with a particular

appointment with make appointment (appointment).

• If the result of the operation can change the state of the object, then the

operation must be explicitly included on the class diagram. On the other

hand, if the update operation is a simple assignment operation, it can be

omitted from the diagram.

Operations (of Classes)

– A destructor operation simply deletes or removes the object from

the system.

• For example, if an employee object no longer represents an actual

employee associated with the firm, the employee could need to be

removed from the employee database, and a destructor operation would

be used to implement this behavior.

• However, deleting an object is one of the basic functions and therefore

would not be included on the class diagram.

Operations (of Classes)

• A primary purpose of a class diagram is to show the relationships, or associations, that classes

have with one another.

• When multiple classes share a relationship (or a class shares a relationship with itself), a line is

drawn and labeled with either the name of the relationship or the roles that the classes play in

the relationship.

• For example, the two classes namely patient and appointment are associated with one another

whenever a patient schedules an appointment.

• Thus, a line labeled schedules connects patient and appointment, representing exactly how the

two classes are related to each other.

Associations (i.e., the Relationships)

• Sometimes a class is related to itself, as in the case of a

patient being the primary insurance carrier for other

patients (e.g., spouse, children).

• Notice that a line was drawn between the patient class

and itself and called primary insurance carrier to depict

the role that the class plays in the relationship.

• Notice that a plus (+) sign is placed before the label to

communicate that it is a role as opposed to the name of

the relationship.

• When labeling an association, we use either a

relationship name or a role name (not both), whichever

communicates a more thorough understanding of the

model.

Associations

• Three examples of associations are

portrayed:

1. An Invoice is AssociatedWith a Purchase

Order (and vice versa),

2. a Pilot Flies an Aircraft , and

3. a Spare Tire IsLocatedIn a Trunk.

• Also, notice that there is a small solid

triangle beside the name of the

relationship.

– The triangle allows a direction to be

associated with the name of the

relationship.

Associations

• Relationships also have

multiplicity, which documents

how an instance of an object can

be associated with other

instances.

• Numbers are placed on the

association path to denote the

minimum and maximum

instances that can be related

through the association in the

format minimum number..

maximum number (see next

Figure).

Associations

Associations

• There are times when a relationship itself has associated properties,

especially when its classes share a many-to-many relationship.

– In these cases, a class called an association class is formed, which has its

own attributes and operations.

– It is shown as a rectangle attached by a dashed line to the association path,

and the rectangle’s name matches the label of the association. Think about

the case of capturing information about illnesses and symptoms.

• Another way to decide when to use an association class is when

attributes that belong to the intersection of the two classes involved

in the association must be captured.

Associations

Associations

• We can visually think about an association class. For example, in the

figure before, the Grade idea is really an intersection of the Student

and Course classes, because a grade exists only at the intersection of

these two ideas.

• Another example shown in the figure is that a job may be viewed as

the intersection between a Person and a Company.

• Most often, classes are related through a normal association;

however, there are two special cases of an association that you will

see appear quite often: generalization and aggregation.

Generalization Associations

• A generalization association shows that one class (subclass) inherits

from another class (superclass), meaning that the properties and

operations of the superclass are also valid for objects of the subclass.

• The generalization path is shown with a solid line from the subclass

to the superclass and a hollow arrow pointing at the superclass.

• Remember that the generalization relationship occurs when you

need to use words like ―is a kind of‖ to describe the relationship.

Generalization Associations

• The figures above state that Cardinal is a-kind-of Bird, which is a-

kind-of Animal; a General Practitioner is a-kind-of Physician, which is

a-kind-of Person

Aggregation Associations

• Aggregation is used to portray logical a-part-of relationships and is

depicted on a UML class diagram by a hollow or white diamond.

• Logical implies that it is possible for a part to be associated with

multiple wholes or that is relatively simple for the part to be

removed from the whole.

Aggregation Associations

• For example, think about a doctor’s office that has decided to create health

care teams that include doctors, nurses, and administrative personnel.

• As patients enter the office, they are assigned to a health care team, which

cares for their needs during their visits. We could include this new

knowledge by adding two new classes (Administrative Personnel and

Health Team) and aggregation relationships from the Doctor, the Nurse,

and the new Administrative Personnel classes to the new Health Team

class.

• A diamond is placed nearest the class representing the aggregation (health

care team), and lines are drawn from the diamond to connect the classes

that serve as its parts (doctors, nurses, and administrative personnel).

Aggregation Associations

• Typically, you can identify these kinds of associations when you need

to use words like ―is a part of‖ or ―is made up of‖ to describe the

relationship.

• From a UML perspective, there are two types of aggregation

associations: aggregation and composition.

Aggregation Associations

• For example:

– an instance of the Employee class IsPartOf an

instance of at least one instance of the

Department class,

– an instance of the Wheel class IsPartOf an

instance of the Vehicle class, and

– an instance of the Desk class IsPartOf an

instance of the Office class.

• Obviously, in many cases an employee can be

associated with more than one department,

and it is relatively easy to remove a wheel

from a vehicle or move a desk from an office.

Composition Association

• Composition is used to portray a physical part of relationships and is

shown by a black diamond.

• Physical implies that the part can be associated with only a single

whole.

Composition Association: Example

• For example in the next figure 3

physical compositions are illustrated: an

instance of a door can be a part of only

a single instance of a car, an instance of

a room can be a part of an instance

only of a single building, and an

instance of a button can be a part of

only a single mouse.

Composition Association: Example

• For example in the next figure 3 physical compositions are illustrated: an instance

of a door can be a part of only a single instance of a car, an instance of a room can

be a part of an instance only of a single building, and an instance of a button can

be a part of only a single mouse.

• However, in many cases, the distinction that you can achieve by including

aggregation (white diamonds) and composition (black diamonds) in a class

diagram might not be worth the price of adding additional graphical notation for

the client to learn.

• Therefore, many UML experts view the inclusion of aggregation and composition

notation to the UML class diagram as simply ―syntactic sugar‖ and not necessary

because the same information can always be portrayed by simply using the

association syntax.

Your turn! A simple task

• Create a class diagram based on the CRC cards you created for

previous task!

wrapped up: the complete steps are …

Creating Structural Models Using CRC Cards

and Class Diagrams (7-step)

1. Create CRC Cards

2. Review CRC Cards

– review the CRC cards to determine if

additional candidate objects, attributes,

operations, and relationships are missing

3. Role-Play the CRC Cards

4. Create Class Diagram

5. Review Class Diagram

– challenging the reasons for including the

information contained in the model

6. Incorporate Patterns

7. Review the Model (see

verifying & validating

CRC cards and class

diagram)

….. when we finish creating a class diagram, it can be the

case that the class diagram is fully populated with all the

classes and relationships for a real world system, thus

the class diagram can become very difficult to interpret

(i.e., can be very complex) ……

1 . 4
S I M P L I F Y I N G

C L A S S D I A G R A M

Simplifying Class Diagrams

1. One way to simplify the class diagram is to show only

concrete classes.

– However, depending on the number of associations that are

connected to abstract classes—and thus inherited down to the

concrete classes—this particular suggestion could make the

diagram more difficult to comprehend.

Simplifying Class Diagrams

2. A second way to simplify the class diagram is through the use of a

view mechanism.

– Views were developed originally with relational database management systems to

show only a subset of the information contained in the database.

– In this case, the view would be a useful subset of the class diagram, such as

• A first view, i.e., a use-case view that shows only the classes and relationships relevant

to a particular use case.

• A second view could be to show only a particular type of relationship: aggregation,

association, or generalization.

• A third type of view is to restrict the information shown with each class, for example,

show only the name of the class, the name and attributes, or the name and operations.

Simplifying Class Diagrams

3. A third approach to simplifying a class diagram is through the use

of packages (i.e., logical groups of classes).

– To make the diagrams easier to read and keep the models at a reasonable level

of complexity, the classes can be grouped together into packages.

– In the case of class diagrams, it is simple to sort the classes into groups based

on the relationships that they share.

– These view mechanisms can be combined to further simplify the diagram.

1 . 5
O B J E C T

D I A G R A M S
(B R I E F)

Object Diagrams

• Although class diagrams are necessary to document the structure of

the classes, a second type of static structure diagram, called an object

diagram, can be useful in revealing additional information.

• An object diagram is essentially an instantiation of all or part of a class

diagram.

• Instantiation means to create an instance of the class with a set of

appropriate attribute values.

• Object diagrams can be very useful when trying to uncover details of

a class.

Object

Diagrams:

example

1 . 6
V E R I F Y I N G &

V A L I D A T I N G T H E
S T R U C T U R A L

M O D E L

Verifying & Validating the Structural Model

(8-step)
• First, every CRC card should be associated with a class on the class

diagram, and vice versa.

– In the appointment example, the Old Patient class represented by the CRC card

does not seem to be included on the class diagram.

– However, there is a Patient class on the class diagram. The Old Patient CRC card

most likely should be changed to simply Patient.

• Second, the responsibilities listed on the front of the CRC card must

be included as operations in a class on a class diagram, and vice

versa.

– The make appointment responsibility on the new Patient CRC card also appears

as the make appointment() operation in the Patient class on the class diagram.

– Every responsibility and operation must be checked.

Verifying & Validating the Structural Model

(8-step)

• Third, collaborators on the front of the CRC card imply some type of

relationship on the back of the CRC card and some type of

association that is connected to the associated class on the class

diagram.

– The appointment collaborator on the front of the CRC card also appears as

another association on the back of the CRC card and as an association on the

class diagram that connects the Patient class with the Appointment class.

• Fourth, attributes listed on the back of the CRC card must be included

as attributes in a class on a class diagram, and vice versa.

– For example, the amount attribute on the new Patient CRC card is included in

the attribute list of the Patient class on the class diagram.

Verifying & Validating the Structural Model

(8-step)

• Fifth, the object type of the attributes listed on the back of the CRC card

and with the attributes in the attribute list of the class on a class

diagram implies an association from the class to the class of the object

type.

– For example, technically speaking, the amount attribute implies an association

with the double type.

– However, simple types such as int and double are never shown on a class diagram.

– Furthermore, depending on the problem domain, object types such as Person,

Address, or Date might not be explicitly shown either.

– However, if we know that messages are being sent to instances of those object

types, we probably should include these implied associations as relationships.

Verifying & Validating the Structural Model

(8-step)

• Sixth, the relationships included on the back of the CRC card must be

portrayed using the appropriate notation on the class diagram.

– For example, instances of the Patient class are a-kind-of Person, it has instances of

the Medical History class as part of it, and it has an association with instances of

the Appointment class. Thus, the association from the Patient class to the Person

class should indicate that the Person class is a generalization of its subclasses,

including the Patient class; the association from the Patient class to the Medical

History class should be in the form of an aggregation association (a white

diamond); and the association between instances of the Patient class and

instances of the Appointment class should be a simple association.

Verifying & Validating the Structural Model

(8-step)

• Sixth, the relationships included on the back of the CRC card must be

portrayed using the appropriate notation on the class diagram.

– However, when we review the class diagram example, this is not what we find. If

you recall, we included in the class diagram the transaction pattern. When we did

this, many changes were made to the classes contained in the class diagram. All of

these changes should have been cascaded back through all of the CRC cards. In

this case, the CRC card for the Patient class should show that a Patient is a-kind-of

Participant (not Person) and that the relationship from Patient to Medical History

should be a simple association

Verifying & Validating the Structural Model

(8-step)

• Seventh, an association class, such as the Treatment class, should be

created only if there is indeed some unique characteristic (attribute,

operation, or relationship) about the intersection of the connecting

classes.

– If no unique characteristic exists, then the association class should be removed

and only an association between the two connecting classes should be displayed.

• Finally, as in the functional models, specific representation rules must

be enforced.

– For example, a class cannot be a subclass of itself. The Patient CRC card cannot

list Patient with the generalization relationships on the back of the CRC card, nor

can a generalization relationship be drawn from the Patient class to itself.

Verifying &

Validating

the

Structural

Model

This figure portrays the

associations among the

structural models

Summary

• CRC cards capture the essential elements of a class.

• Class and object diagrams show the underlying structure of an object-

oriented system.

• Constructing the structural model is an iterative process involving:

textual analysis, brainstorming objects, role playing, creating the

diagrams, and incorporating useful patterns.

• Object diagrams can be used to help identifying details of the class

diagrams

• Verifying & Validating the Structural Model ensure the consistency of the

Structural Model

References

• Systems Analysis and Design: An Object Oriented Approach with UML

5th ed. Alan Dennis, Barbara Haley Wixom, and Roberta M. Roth ©

2015

Your turn! Do it in pair

Draw a class diagram for each of following situations!

1. Whenever new patients are seen for the first time, they complete a

patient information form that asks their name, address, phone

number, and insurance carrier, which are stored in the patient

information fi le. Patients can be signed up with only one carrier,

but they must be signed up to be seen by the doctor. Each time a

patient visits the doctor, an insurance claim is sent to the carrier

for payment. The claim must contain information about the visit,

such as the date, purpose, and cost. It would be possible for a

patient to submit two claims on the same day.

Your turn! Do it in pair

Draw a class diagram for each of following situations!

2. The state of Georgia is interested in designing a system that will

track its researchers. Information of interest includes researcher

name, title, position, researcher’s university name, university

location, university enrollment, and researcher’s research interests.

Researchers are associated with one institution, and each

researcher has several research interests.

