UNIVERSITAS
INDONESIA

FAKULTAS

ILMU
KOMPUTER

TOPIC O

STRUCGTURAL
MODELLING

ANALISIS DAN PERANCANGAN SISTEM INFORMASI
CSIM603183

1. Able to explain the rules and components of class diagram, CRC
Cards, object diagrams, and other techniques.

2. Able to explain the process to create class diagram, CRC Cards,
object diagrams, and other techniques.

3. Able to explain the relationship between structural and
functional model (usecase diagram)

4. Able to validate and verify the structural model.

Structural Models

Object Identification

CRC Cards

Class Diagrams

Object Diagrams

Veritying & Validating the Structural Model

o kW ihH

« During analysis, analysts create business process and functional
models to represent how the business system will behave externally
(last week — use cases modeling)

At the same time, analysts need to understand the information that
Is used and created by the business system.

— We discuss now the structural modeling of how the objects
underlying the behavior modeled in the business process and
functional models are organized and presented.

« Requirements gathering and analysis (Week #4)
— Deliver System Proposal

« It's a proposed logical information systems:
— functional requirements: relates to a process or data
— non-functional requirements: relates to performance or usability

— Nonfunctional requirements can influence functional, structural,
and behavioral model
— Deliver precise list of requirements that can be used as inputs
to the rest of analysis for creating functional, structural, and
behavioral model.

e List of functional requirements are input to Functional Model with
Use Cases as core building blocks—focus on process (Week #5)

« A structural or conceptual model describes the structure of the
data that supports the business processes in an organization—
focus on data (Week #6)

A structural or conceptual model describes the structure of the data
that supports the business processes in an organization

* The structure of data used in the system is represented through CRD
cards, class diagrams, and object diagrams

« Constructing the structural model is an iterative process involving:
textual analysis, brainstorming objects, role playing, creating the
diagrams, and (ncorporating useful patterns

 Verifying & Validating the Structural Model ensure the consistency of
the Structural Model

» Simplifying the class diagram is often necessary (view)

« All object-oriented systems development approaches are use-case
driven, architecture-centric, and iterative and incremental. Use cases
form the foundation on which the business information system is
created.

* From an architecture-centric perspective, structural modeling supports
the creation of an internal structural or static view of a business
information system in that it shows how the system is structured to
support the underlying business processes.

e Finally, as with business process and functional modeling, you will find
that you will need to not only iterate across the structural models
(described in this chapter), but you will also have to iterate across all
three architectural views (functional, structural, and behavioral) to fully
capture and represent the requirements for a business information

system.

A structural model is a formal way of representing the objects that are
used and created by a business system. It illustrates people, places,
or things about which information is captured and how they are
related to one another.

* The structural model is drawn using an iterative process in which the
model becomes more detailed and less conceptual over time.

* In analysis, analysts draw a conceptual model, which shows the
logical organization of the objects without indicating how the objects
are stored, created, or manipulated.

* In design, analysts evolve the conceptual structural model into a
design model that reflects how the objects will be organized in
databases and software.

* At this point, the model is checked for redundancy, and the analysts
Investigate ways to make the objects easy to retrieve.

Main goal: to discover the key data contained in the problem domain
and to build a structural model of the objects (static view).

Structural
Modeling

Solution Domain

Problem Domalin

» Every time a systems analyst encounters a new problem to solve, the
analyst must learn the underlying problem domain. The goal of the
analyst is to discover the key objects contained in the problem domain
and to build a structural model.

* One of the primary purposes of the structural model is to create a
vocabulary that can be used by the analyst and the users to
communicate effectively.

— Structural models represent the things, ideas, or concepts contained in the
domain of the problem. They also allow the representation of the relationships
among the things, ideas, or concepts.

« It is important to remember that at this stage of development, the
structural model does not represent software components or
classes in an object-oriented programming language, even though
the structural model does contain analysis classes, attributes,
operations, and the relationships among the analysis classes.

* The refinement of these initial classes into programming-level objects
comes later.

» The structural model at this point should represent the responsibilities
of each class and the collaborations among the classes.

 Typically, structural models are depicted using CRC cards, class

diagrams, and, in some cases, object diagrams. However, before
describing CRC cards, class diagrams, and object diagrams, we
describe the basic elements of structural models: (1) classes, (2)
attributes, (3) operations, and (4) relationships.

Box

-volume
- material

+fill ()
+empty ()

e

-

N\

 Classes

*Templates for instances of
people, places, or things
* Attributes

*Properties that describe the
state of an instance of a class (an
object)

* Operations

*Actions or functions that a class
can perform

* A class is a general template that we use to create specific instances, or
objects, in the problem domain. All objects of a given class are identical
in structure and behavior but contain different data in their attributes.

» There are two general kinds of classes of interest during analysis:
concrete and abstract.

— Normally, when an analyst describes the application domain classes, he or she is
referring to concrete classes; that is, concrete classes are used to create objects.

— Abstract classes do not actually exist in the real world; they are simply useful
abstractions.

* For example, from an employee class and a customer class, we may
identify a generalization of the two classes and name the abstract class
person.

« We might not actually instantiate the person class in the system itself,
instead creating and using only employees and customers.

A second classification of classes is the type of real-world thing that a
class represents.

* There are domain classes, user-interface classes, data structure classes,
file structure classes, operating environment classes, document classes,
and various types of multimedia classes.

« At this point in the development of our evolving system, we are
Interested only in domain classes.

* Later in design and implementation, the other types of classes become
more relevant.

* An attribute of an analysis class represents a piece of information
that is relevant to the description of the class within the application
domain of the problem being investigated. An attribute contains
information the analyst or user feels the system should keep track of.

* For example, a possible relevant attribute of an employee class is
employee name, whereas one that might not be as relevant is hair
color. Both describe something about an employee, but hair color is
probably not all that useful for most business applications.

 Finally, only attributes that are primitive or atomic types (i.e.,
integers, strings, doubles, date, time, Boolean, etc.) should be added.
Most complex or compound attributes are really placeholders for
relationships between classes (see next slides).

The behavior of an analysis class is defined in an operation or service. In later
phases, the operations are converted to methods.

Like attributes, only problem domain—specific operations that are relevant to the
problem being investigated should be considered.

For example, it is normally required that classes provide means of creating
instances, deleting instances, accessing individual attribute values, setting
individual attribute values, accessing individual relationship values, and removing
individual relationship values. However, at this point in the development of the
evolving system, the analyst should avoid cluttering up the definition of the class
with these basic types of operations and focus only on relevant problem domain-
specific operations.

Action that instances/objects can take focus on relevant problem-specific
operations (at this point)

* Describe how classes relate to one another
 Three basic types in UML

o Generalization

Enables inheritance of attributes and operations

Represents relationships that are “a-kind-of”
= Aggregation

Relates parts to wholes or assemblies

Represents relationships that are “a-part-of” or “has-parts”
= Association

Miscellaneous relationships between classes

Usually a weaker form of aggregation

* The generalization abstraction enables the analyst to create classes
that inherit attributes and operations of other classes.

— A superclass contains basic attributes and operations that will be used in
several subclasses.

— The subclasses inherit the attributes and operations of their superclass and
can also contain attributes and operations that are unique just to them.

— In this way, the analyst can reduce the redundancy in the class definitions

— For example, a customer class and an employee class can be generalized into a
person class by extracting the attributes and operations both have in common
and placing them into the new superclass, person. Thus, an employee is a-
kind-of person.

snecialization & hierarchy

« The analyst also can use the opposite of generalization:
Specialization uncovers additional classes by allowing new
subclasses to be created from an existing class.

— For example, an employee class can be specialized into a secretary class and an
engineer class.
* Furthermore, generalization relationships between classes can be
combined to form generalization hierarchies.

— Based on the previous examples, a secretary class and an engineer class can be
subclasses of an employee class, which in turn could be a subclass of a person
class.

— This would be read as a secretary and an engineer are a-kind-of employee
and a customer and an employee are a-kind-of person.

substitutability

* To ensure that the semantics of the subclasses are maintained, the
analyst should apply the principle of substitutability.

By this we mean that the subclass should be capable of substituting
for the superclass anywhere that uses the superclass (e.g., anywhere
we use the employee superclass, we could also logically use its
secretary subclass).

By focusing on the a-kind-of interpretation of the generalization
relationship, the principle of substitutability is applied.

a-part-of / has-parts

* Generally speaking, all aggregation relationships relate parts to
wholes or assemblies.

— For example, a door is a-part-of a car, an employee is a-part-of a department,
or a department is a-part-of an organization.

* Like the generalization relationship, aggregation relationships can
be combined into aggregation hierarchies.

— For example, a piston is a-part-of an engine, and an engine is a-part-of a car.

a-part-of / has-parts

« Aggregation relationships are bidirectional. The flip side of
aggregation is decomposition. The analyst can use decomposition to
uncover parts of a class that should be modeled separately.

— For example, if a door and an engine are a-part-of a car, then a car has-parts
door and engine. The analyst can bounce around between the various parts to
uncover new parts. For example, the analyst can ask, What other parts are
there to a car? or To which other assemblies can a door belong?

* There are other types of relationships that do not fit neatly into a
generalization (a-kind-of) or aggregation (a-part-of) framework.

 Technically speaking, these relationships are usually a weaker form
of the aggregation relationship.

— For example, a patient schedules an appointment. It could be argued that a
patient is a-part-of an appointment.

« However, there is a clear semantic difference between this type of
relationship and one that models the relationship between doors
and cars or even workers and unions. Thus, they are simply
considered to be associations between instances of classes.

1.1
OBJECT
IDENTIFIGATION

* The 4 (four) most common approaches for object identification are
1. textual analysis,
2. brainstorming,
3. common object lists, and

4. patterns.

* Most analysts use a combination of these techniques to make sure
that no important objects and object attributes, operations, and
relationships have been overlooked.

* Review the use-case diagrams and examining the text in the use-
case descriptions to identify potential objects, attributes, operations,
and relationships.

* The nouns in the use case suggest possible classes, and the verbs
suggest possible operations.

* This figure presents a summary of useful guidelines.

* The textual analysis of use-case descriptions has been criticized as
being too simple, but because its primary purpose is to create an
initial rough-cut structural model, its simplicity is a major advantage.

A common or improper noun implies a class of objects.

= A proper noun or direct reference implies an instance of a class.

= A collective noun implies a class of objects made up of groups of instances of another class.
= An adjective implies an attribute of an object.

* A doing verb implies an operation.

* A being verb implies a classification relationship between an object and its class.
= A having verb implies an aggregation or association relationship.

= A transitive verb implies an operation.

* An intransitive verb implies an exception.

» A predicate or descriptive verb phrase implies an operation.

* An adverb implies an attribute of a relationship or an operation.

Adapted from: These guidelines are based on Russell |. Abbott, “Program Design by Informal English Descriptions,”
Communications of the ACM 26, no. 11 (1983): 882-894; Peter P-5 Chen, “English Sentence Structure and
Entity-Relationship Diagrams,” Information Sciences: An International Journal 29, no. 2-3 (1983): 127-149;

lan Graham, Migrating to Object Technology (Reading, MA: Addison Wesley Longman, 1995).

* For example, if we applied these rules to the Make Old Patient Appt
use case:

— We can easily identify potential objects for an old patient, doctor,
appointment, patient, office, receptionistt name, address, patient
information, payment, date, and time.

— We also can easily identify potential operations, for example, patient
contacts office, makes a new appointment, cancels an existing
appointment, changes an existing appointment, matches requested
appointment times and dates with requested times and dates, and finds
current appointment.

2 Low

Lise (Case Wame: Make Old Pattent Agpl | o 32 Impaontance Leval:

Primary Actor: Old Pabtent | Use CaseType: Detal, Bssential

Seakeholders and Intarests:
(Md Patient - wants to make, change, or cancel an appolstment
Doctor - wants to ensure patient’s needs are met In a timely manmer

Brief Descripthon: This use case describes bonw we make an appointment as well as changing or canceling
am appoistment for 2 previously seen patient

Trigger: Patlent calls and asks for 2 mew appointment or ks to cancel or chasge an existing appolntment

Type: External

Relationsh sl
Assnc|atlon: 0ld Patlent
nelude:
Extend: Update Fatlent Information

Generaliztion; Mamage Appoinimenis

rormal Flow of Evens:

L. The Patient contacts the office regamding an appointment.
2 The Patient provides the Receptionist with his or ber name and addres.
If the Patient's Information has chasged
Execute the Update Patlent [nformabion use css.
If the Patient’s payment amangements has chasged
Execute the Make Payments Armangements use ase.

The Receptionist asks Patlent 1 ke or she womld ke bo make 2 new appolntment, cance an existing appoimment, of change
an existing appointment.

(17}

™

wm

If the patient wants 1o make 2 new appolntment,
the 5- 1- mew appointment subflow s performed.
If the patient wanis to cance an existing appoiniment,
the 52 mnce appointment subfow is performad.
If thie patient wamis o chasge an evisting appolntment,
the 5-3 chamge appoistment sobflow s perfoemed.
& The Beceptionist provides the results of the transaction o the Patient.

SubFlows:
5-1: Mew Appointment
1. Ther Receptiomist asks the Fabent for possible appoiniment times.

2. Ther Receptionist matches the Pabent’s destred appoiniment imes with avallable dates and
times amd schadules the mew appointment

5-2: Cancel Appointment

1. Ther Receptionist asks the Fabient for the old appointment time

7. Thes Receptiomist fmds the corrent appoinimest in the appoiniment file and camcels it
5.3. Change Appaintment

1. Ther Receptiomist performs the 5-2: el appotniment sobflow:
. The Receptionist performs the 5-1: new appoiniment subSow.

[

AlemaseExcepeional Flows:

5-1, 2al: The Receptionist proposes some altzrnattve appointment dmes based on wihat is mailable in the
appointment sche dide.

5-1, za2: The Patlest choomes one of the proposed times or decides sot to make an appolniment.

* Essentially, in this context, brainstorming is a process that a set of
individuals sitting around a table suggest potential classes that could
be useful for the problem under consideration.

 Typically, a brainstorming session is kicked off by a facilitator who
asks the set of individuals to address a specific question or statement
that frames the session.

— For example, using the appointment problem described previously, the
facilitator could ask the development team and users to think about their
experiences of making appointments and to identify candidate classes based
on their past experiences.

* Notice that this approach does not use the functional models
developed earlier.

— It simply asks the participants to identify the objects with which they have
interacted. For example, a potential set of objects that come to mind are
doctors, nurses, receptionists, appointment, illness, treatment, prescriptions,
insurance card, and medical records.

— Once a sufficient number of candidate objects have been identified, the
participants should discuss and select which of the candidate objects should
be considered further.

— Once these have been identified, further brainstorming can take place to
identify potential attributes, operations, and relationships for each of the
identified objects.

* First, all suggestions should be taken seriously. At this point in the
development of the system, it is much better to have to delete
something later than to accidentally leave something critical out.

 Second, all participants should begin thinking fast and furiously.
After all ideas are out on the proverbial table, then the participants
can be encouraged to ponder the candidate classes they have
identified.

 Third, the facilitator must manage the fast and furious thinking process.
Otherwise, the process will be chaotic. Furthermore, the facilitator should
ensure that all participants are involved and that a few participants do not
dominate the process. To get the most complete view of the problem, we
suggest using a round-robin approach wherein participants take turns
suggesting candidate classes. Another approach is to use an electronic
brainstorming tool that supports anonymity.

 Fourth, the facilitator can use humor to break the ice so that all participants
can feel comfortable in making suggestions

* Seems having similarity with JAD?

« A common object list is simply a list of objects common to the
business domain of the system.

 Several categories of objects have been found to help the analyst in
creating the list, such as physical or tangible things, incidents, roles,
and interactions.

— Analysts should first look for physical, or tangible, things in the business
domain. These could include books, desks, chairs, and office equipment.
Normally, these types of objects are the easiest to identify.

— Incidents are events that occur in the business domain, such as meetings,
flights, performances, or accidents.

— Reviewing the use cases can readily identify the roles that the people play in
the problem, such as doctor, nurse, patient, or receptionist.

— Typically, an interaction is a transaction that takes place in the business
domain, such as a sales transaction.

« Other types of objects that can be identified including places,
containers, organizations, business records, catalogs, and policies

The idea of using patterns is a relatively new area in object-oriented systems
development. There have been many definitions of exactly what a pattern is.

From our perspective, a pattern is simply a useful group of collaborating
classes that provide a solution to a commonly occurring problem. Because
patterns provide a solution to commonly occurring problems, they are
reusable.

According to Alexander and his colleagues, it is possible to make very
sophisticated buildings by stringing together commonly found patterns,
rather than creating entirely new concepts and designs.

In a similar manner, it is possible to put together commonly found object-
oriented patterns to form elegant object-oriented information systems.

* For example, many business transactions involve the same types of
objects and interactions. Virtually all transactions would require a
transaction class, a transaction line item class, an item class, a location
class, and a participant class. By reusing these existing patterns of
classes, we can more quickly and more completely define the system
than if we start with a blank piece of paper.

o If we are developing a business information system in one of these
business domains, then the patterns developed for that domain may
be a very useful starting point in identifying needed classes and their
attributes, operations, and relationships.

Business Domains Sources of Patterns

Accounting 3.4

[]

Actor-Role
Assembly-Part [

Container-Content I
Contract 2,4
Document 2,4
Employment 2,4
Financial Derivative Contracts 3
Ceographic Location 2,4
Croup-Member I
Interaction I

[

Material Regquirements Planning

et
il

Organization and Party
Plan 1,3
Process Manufacturing

[

Trading 3
Transactions 1, 4

. Peter Coad, David North, and Mark Mayfield, Object Models: Strategies, Patterns, and Applications,
2nd Ed. (Englewood Cliffs, M2 Prentice Hall, 1997).

2. Hans-Erik Eriksson and Magnus Penker, Business Modeling with UML: Business Patterns at Work
iew York: Wiley, 2000,

3. Martin Fowler, Analysis Patterns: Reusable Object Models (Reading. MAZ Addison-Wesley, 1997).

4. David C. Hay, Data Model Patterns: Conventons of Thought (New York, NY, Dorset House, 1996).

Party

Place

0."

Person Organization

Transaction Transaction Line ltem Item

1.1 L.* 0.” 1.1

Participant Product

Transaction Entry Account Good Service

1.1 2.2

Account

Entry

Place

Transaction Line ltem

ltem

NI Transaction
.1 E
0.*
1.1
Participant
Person Organization

Service

1.2
CLASS-
RESPONSIBILITY
-COLLABORATION
[CRCG) CARDS

 In addition to the object identification approaches described earlier
(textual analysis, brainstorming, common object lists, and patterns),
CRC cards can be used in a role-playing exercise that has been shown
to be useful in discovering additional objects, attributes, relationships,

and operations.

* Responsibilities of a class can be broken into two separate
types: knowing and doing.
— Knowing responsibllities are those things that an instance of a class
must be capable of knowing.

« An instance of a class typically knows the values of its attributes and its
relationships.
— Doing responsibllities are those things that an instance of a class
must be capable of doing.
* In this case, an instance of a class can execute its operations or it can

request a second instance, which it knows about, to execute one of its
operations on behalf of the first instance

* The structural model describes the objects necessary to support the
business processes modeled by the use cases. Most use cases involve
a set of several classes, not just one class.

* These classes form collaborations. Collaborations allow the analyst to
think in terms of clients, servers, and contracts.

— A client object is an instance of a class that sends a request to an instance of
another class for an operation to be executed.

— A server object is the instance that receives the request from the client object.
— A contract formalizes the interactions between the client and server objects.
* Collaboration

— Objects working together to service a request

The idea of class responsibilities and client-server—contract collaborations can be
used to help identify the classes, along with the attributes, operations, and
relationships, involved with a use case.

Anthropomorphism—pretending that the classes have human characteristics.

Members of the development team can either ask questions of themselves or be
asked questions by other members of the team. Typically the questions asked are of
the form:

— Who or what are you?
— What do you know?
— What can you do?

The answers to the questions are then used to add detail to the evolving CRC cards.

* For example, in the appointment problem, a member of the team can
pretend that he or she is an appointment. In this case, the
appointment would answer that he or she knows about the doctor
and patient who participate in the appointment and they would know
the date and time of the appointment.

e Furthermore, an appointment would have to know how to create
itself, delete itself, and to possibly change different aspects of itself. In
some cases, this approach will uncover additional objects that have to
be added to the evolving structural model.

Front:

Class Name: Old Patient 1D: 3 Type: Concrete, Domain
Description: An individual who needs to receive or has received Associated Use Cases: 2
medical attention
Responsibilities Collaborators
Make appointment Appointment

Calculate last visit

Change status

Provide medical history Medical history

Back:

Attributes:

Amount {double)

Insurance carrier (text)

Relationships:
Generalization (a-kind-of): Person

Apgregation (has-parts): Medical History

Other Associations: Appointment

» Role-playing is very useful in testing the fidelity of the evolving
structural model

 Technically speaking, the members of the team perform the different
steps associated with a specific scenario of a use case.

 Consists of 4 steps:
1. Review Use Cases
2. Identify Relevant Actors and Objects
3. Role-Play Scenario
4. Repeat Steps 1to 3

* This allows the team to pick a specific use case to role-play.

* Even though it is tempting to try to complete as many use cases as
possible in a short time, the team should not choose the easiest use
cases first.

* Instead, at this point in the development of the system, the team
should choose the use case that is the most important, the most
complex, or the least understood.

ldentity Relevant Actors and

[|

Class Name: (ld Fatient ID: 3 Type: Concrets, Domaln

Description: Ah individiz] who needs to recetve or has recetved | Associated Use Cases: 2
medical attention

* Each role is associated with either an oot oo

Make appolntment Appointment

Calculate Last visit

actor or an object. To choose the

relevant objects, the team reviews

each of the CRC cards and picks the

ones that are associated with the

Alitribates:
Amaunt (dowhle)

Ch Osen use Case o Insurance @arrier LLext)

* For example, we see that the CRC

Relationships:
Generalization (a-kind-of): Person

card that represents the Old Patient

Appregation thas-parish: Medical History

class is associated with Use Case

Crther Associalions: Apprintment

number 2.

Identify Relevant Actors and
Objects

So if we were going to role-play the Make Old
Patient Appt use case, we would need to
include the Old Patient CRC card.

By reviewing the use-case description, we can
easily identify the OId Patient and Doctor
actors (see Primary Actor and Stakeholders
section of the use case description).

By reading the event section of the use-case
description, we identify the internal actor role
of Receptionist.

After identifying all of the relevant roles, we
assign each one to a different member of the
team.

Use {ase Mame: Make (Hd Pattent Agmt ||[:|: 2 Imponance Leval: Low

Primary Acior: (M Patient |L,se-::aserg.-pc-: Detzil, Essentia]

Seakeholders and Inteness:
(id Patlent - wants to make, change, or cancel an appoletment
Doctor - wants to ensure patient’s nesds are met 1o a timely manmer

Bried Descripdon: This use cse describes bow we make an appointment as well as changing or canceling
am appoimtment for a previowshy seen patient

Trigger: Patlent clls and asks for 2 new appoinitment or asks to cancel or change an existing appolntment.

Type: External

Riedationships:
Assoclation: Old Patlent
includea;
Extend: Update Patient [nformation
Generalization: Masage Appointments

Hormal Flow of Evens:
L The Patient contacts the office ragarding an appatniment.
2 The Palient provides the Raceptionist with bis or ber name and addres.
3. If the Pattent’s Informatica has
Execute the Update Patlent [nformabion use case.
i Ifthe Pattent's payment arrangements has changed
Exacute the Make Prymeniz Arracgements use cass.
5 The Receptiontst asks Patient 1f ke or she would lke to make 2 sew appoletment, cancel an existing appointmest, or chasge
an existing appoiniment.
If thiz patient wants o make a new appolntment,
the 5-1: mew appointment sobflow Is performed
If thie pattent wamts o camce an existing appoéntment,
the 52 cance appointment subSow s performad.
If thiz patient wanis i change an existing appolntment,
the 5-3 change appoiniment subflow is perfommed
5 The Recepbionist providas the resulis of the transaction to the Pattent.

SubFlows:
5-1: New Appolntment
1. The Receptionist asks the Pablent for possible appointment times.
2. The Receptionist matches the Patent’s destred appotntment times with avallable dates and
times and schisdules the pew appointment
5-2. Cancel Appointment
1. The Receptionist asks the Patiest for the old appointment time.
2 The Hecepbionist Smds the current appotnimest in the appoiniment file and cancels it
5-3: Change Appointment
1. The Receptionist perfoems the 5.2: cmcel appotntment sobfiow:
2 The Hecepbionisl performs the - 1: new appaintment subfiow.

AlternaseExoeptional Flows:
5-1, Zal: The Receptiomist proposss some alt=rnative appointment dmes based on what is available in the
appointment scheduds.
5-1, 222: The Patieni dbooses one of the proposad times or decides not o make an appolntment.

Each team member must pretend that he or she
is an instance of the role assigned to him or her.

For example, if a team member was assigned the
role of the Receptionist, then he or she would
have to be able to perform the different steps in
the scenario associated with the Receptionist.

In the case of the change appointment scenario,
this would include steps 2, 5, 6, S-3, S-1, and S-
2.

However, when this scenario is performed (role-
played), it would be discovered that steps 1, 3,
and 4 were incomplete... continued (n next slides

Lise (156 Mame: Make Old Pattent Agpl ||[:|: 2 Imponance Leval: Low

Primary Actor: Old Patens |L,s.:--:;15ergrp.:-: Deetal, Essentia]

seakeholders and Inwerass;
(ild Patient — wankx io make, change, or cancel an appolotment
Dwoctor — wanis to ensure patient’s nesds are met 1o a timely manmer

Brief Descripdon: This use case describes b we make an appotntment as well as changing or canceling
am appolstmeent for a previously seen patlent

Trigger: Patient clls amd asks for 2 mew appointment or asks tocancel or chasge an existing appolntment

Type: External

Relationships:
Association: Oid Patlent
nclude;
Fabend: Uipdate Patient [nformation

Generallzion; Masage Appotntments

tormmal Flow of Evens:
L. The Patient conlacts the office regamdisg an appointment.
2 The Patient prosrdes the Receptionist with his or ber name and addres.
3_Ifthe Patient’s Informatics has chasged
Exeute the Update Patlent [nformation use ase.
i If the Patient’s payment arrangements has chasged
Execute the Make Payments Arrangements use case.
5 The Receptinnist asks Pattent 1f ke or she wonld Hke to make 2 sew appolstment. cancel an existing appoinimest, or chasge
an existing appoimtment
If the patient wants o make a new appolntment,
the 5- 1- mew appointment sobflow s performed.
If the patient wanis o ance an existing appoinimend,
the 5- 2 mecel appotntment subfiow s performead.
If the patiznt wanis to chasge an existisg appolntment,
the 53 chamge appointment sobflow s performed
& The Feceptionist provides the results of the transaction to the Patient

SubiFlows:
5-1: Mew Appolntment
1. The Heceptiomist asks the Pabient for possible appointment Himes.
2. Thee Rzczplionist matches the Pabent’s destred appainiment times with avallable dates and
times amd schedules the new appointment.
5-2: Cancel Appointment
1. Thee Hizcplicmist asks the Pabesd for the old appointment time
2. Thez Rzczptiomist Emds the corrent appoinimest in the appointment file and cancels
5.3. Change Appaintment
1. The Rceptionist performs the 5-2: cancel appotntment sobflow:
% Thee Hizcepticmist performs the 5 1: new appaintment subow:

AlernaseExceptlonal Flows:
5-1, Zal: The Recepliomist proposes somee alternattve appolntment Bmes based on what i avallable in the
appointment scheduls.
5-1, 2a2: The Patlent cooses one of the proposed times or decides sot to make an appolntment.

* For example, in Step 1, what actually occurs? Does the Patient make
a phone call? If so, who answers the phone?

e In other words, a lot of information contained in the use-case
description is only identified in an implicit, not explicit, manner.

 When the information is not identified explicitly, there is a lot of
room for interpretation, which requires the team members to make
assumptions.

* It is much better to remove the need to make an assumption by
making each step explicit.

* In this case, Step 1 of the Normal Flow of Events should be
modified. Once the step has been fixed, the scenario is tried
again. This process Is repeated until the scenario can be executed
to a successful conclusion. Once the scenario has successfully
concluded, the next scenario is performed. This is repeated until all
of the scenarios of the use case can be performed successfully.

Repeat Steps1to 3

* The fourth step is to simply repeat steps 1 through 3 for the
remaining use cases.

Your Turn! A simpie task

* Create a CRC card for each of the following classes:
— Movie (title, producer, length, director, genre)
— Ticket (price, adult or child, showtime, movie)

— Patron (name, adult or child, age)

1.3
CLASS
DIAGRAMS

* A class diagram is a static model that shows the classes and the
relationships among classes that remain constant in the system over

time.

» The class diagram depicts classes, which include both behaviors and
states, with the relationships between the classes.

— The main building block of a class diagram is the class, which stores and
manages information in the system.
* The following sections present the elements of the class diagram,
different approaches that can be used to simplify a class diagram, and
an alternative structure diagram: the object diagram.

" Ap polntm ent Fas b Transacton Line ltem | coomire ¢ e m
Account . Emry | T ebit = -
ot -date
- L MR
o Tt KO e BT gs o ol] | JF. |
- . oo Sepoe
1 AsslgnedTa 1.*
Fa s
wcabedAl b Jood |
Participant Place
Prescription Brace Physical Checkup
-lasmame
-frstrame: -
- add ress ;'
-phong 0
-k nhirdaie £
-lage ’
Emp ke Fatlert LT RS b SHmiphom 1.0 1,0 Hiress
ANt [ie « w | NAME H ~gescriplion
- irrance cam ke i
—— i
£ Mk 3P Nk meni; 1 RtE ¥ :
+calculate last vl iy . |
+Change saniel) a i
O B MaEdical b oy Trea henl
Medical History mad icatken
primary Irsincti ors
o e -hean o knasn ST s
ramrkar ’ -High blood pressure Y
=diabetes
-al kg s
Dot on Recopti oris P P

1. Aclass

2. An attribute
3. An operation
4. An association
5. A generalization
6. An aggregation
7. A composition

Each will be described in details
in next slides ...

A class:

« Represents a kind of person, place, or thing about
which the system will need to capture and store
information.

« Has a name typed in bold and centered in its top
compartment.

« Has a list of attributes in its middle compartment.

« Has a list of operations in its bottom compartment.

« Does not explicitly show operations that are
available to all classes.

Class1

-Attribute-1

+Operation-10

An attribute:

« Represents properties that describe the state of an
object.

« Can be derived from other attributes, shown by
placing a slash before the attribute’s name.

attribute name

fderived attribute name

An operation:

« Represents the actions or functions that a class
can perform.

« Can be classified as a constructor, query, or
update operation.

« Includes parentheses that may contain parameters
or information needed to perform the operation.

operation name ()

An association:

« Represents a relationship between multiple
classes or a class and itself.

« 15 labeled using a verb phrase or a role name,
whichever better represents the relationship.

+ Can exist between one or more classes.

« Contains multiplicity symbaols, which represent
the minimum and maximum times a class
instance can be associated with the related class
instance.

AssociatedWith

A generalization:
+ Represents a-kind-of relationship between
multiple classes.

.

An aggregation:

« Represents a logical a-part-of relationship
between multiple classes or a class and itself.

+ [s a special form of an association.

*

IsPartOf »

<>

A composition:

« Represents a physical a-part-of relationship
between multiple classes or a class and itself

« Is a special form of an association.

IsPartOf »

<

* During analysis, classes refer to the people, places, and things about which the
system will capture information. Later, during design and implementation, classes
can refer to implementation-specific artifacts such as windows, forms, and other
objects used to build the system.

« We can see that the classes identified earlier, such as Participant, Doctor, Patient,
Receptionist, Medical History, Appointment, and Symptom, are included in the
previous figure.

A class:

« Represents a kind of person, place, or thing about
which the system will need to capture and store

information.

« Has a name typed in bold and centered in its top Class1
compartment. -Attribute-1

» Has a list of attributes in its middle compartment. +Operation-1{)

« Has a list of operations in its bottom compartment.

« Does not explicitly show operations that are
available to all classes.

Attributes are properties of the class about which we want to capture information

Notice that the Participant class in previous figure contains the attributes:

— lastname, firstname, address, phone, and birthdate.

At times, you might want to store derived attributes
— attributes that can be calculated or derived,;

— these special attributes are denoted by placing a slash (/) before the attribute’'s name.

E.g., the person class contains a derived attribute called /age, which can be derived
by subtracting the patient’s birth date from the current date.

An attribute:
« Represents properties that describe the state of an _
: attribute name
object. o _
« Can be derived from other attributes, shown by derived attribute name
placing a slash before the attribute’s name.

* Visibility relates to the level of information hiding to be enforced for
the attribute. The visibility of an attribute can be public (+), protected
(#), or private (-).

— A public attribute is one that is not hidden from any other object. As such, other
objects can modify its value.

— A protected attribute is one that is hidden from all other classes except its
Immediate subclasses.

— A private attribute is one that is hidden from all other classes.

» The default visibility for an attribute is normally private.

 Operations are actions or functions that a class can perform.

« The functions that are available to all classes (e.g., create a new instance, return a
value for a particular attribute, set a value for a particular attribute, delete an
instance) are not explicitly shown within the class rectangle.

* Instead, only operations unique to the class are included,

 E.g., the cancel without notice operation in the Appointment class and the calculate
last visit operation in the Patient class in the previous figure.

An operatlion:

« Represents the actions or functions that a class
can perform.

« Can be classified as a constructor, query, or operation name (}
update operation.

« Includes parentheses that may contain parameters
or information needed to perform the operation.

 Notice that both the operations are followed by parentheses, which
contain the parameter(s) needed by the operation.

« If an operation has no parameters, the parentheses are still shown but
are empty.

 As with attributes, the visibility of an operation can be designated
public, protected, or private.

» The default visibility for an operation is normally public.

 There are four kinds of operations that a class can contain:
constructor, query, update, and destructor.

— A constructor operation creates a new instance of a class.

* For example, the patient class may have a method called insert (), which
creates a new patient instance as patients are entered into the system.

o If an operation implements one of the basic functions (e.g., create a new
instance), it is normally not explicitly shown on the class diagram, so
typically we do not see constructor methods explicitly on the class diagram.

— A query operation makes information about the state of an object
available to other objects, but it does not alter the object in any
way.

* For instance, the calculate last visit () operation that determines when a

patient last visited the doctor’'s office will result in the object’s being
accessed by the system, but it will not make any change to its information.

o If a query method merely asks for information from attributes in the class
(e.g., a patient’s name, address, phone), then it is not shown on the diagram
because we assume that all objects have operations that produce the
values of their attributes.

— An update operation changes the value of some or all the object’s
attributes, which may result in a change in the object’s state.

« Consider changing the status of a patient from new to current with a
method called change status() or associating a patient with a particular
appointment with make appointment (appointment).

o If the result of the operation can change the state of the object, then the
operation must be explicitly included on the class diagram. On the other
hand, if the update operation is a simple assignment operation, it can be
omitted from the diagram.

— A destructor operation simply deletes or removes the object from
the system.

 For example, if an employee object no longer represents an actual
employee associated with the firm, the employee could need to be
removed from the employee database, and a destructor operation would
be used to implement this behavior.

* However, deleting an object is one of the basic functions and therefore
would not be included on the class diagram.

An association:

« Represents a relationship between multiple
classes or a class and itself.

« Is labeled using a verb phrase or a role name,
whichever better represents the relationship. Associated With

« Can exist between one or more classes. 0.* |

« Contains multiplicity symbaols, which represent
the minimum and maximum times a class
instance can be associated with the related class
instance.

A primary purpose of a class diagram is to show the relationships, or associations, that classes
have with one another.

* When multiple classes share a relationship (or a class shares a relationship with itself), a line is
drawn and labeled with either the name of the relationship or the roles that the classes play in
the relationship.

» For example, the two classes namely patient and appointment are associated with one another
whenever a patient schedules an appointment.

* Thus, a line labeled schedules connects patient and appointment, representing exactly how the
two classes are related to each other.

Sometimes a class is related to itself, as in the case of a
patient being the primary insurance carrier for other
patients (e.qg., spouse, children).

Notice that a line was drawn between the patient class
and itself and called primary insurance carrier to depict
the role that the class plays in the relationship.

Notice that a plus (+) sign is placed before the label to
communicate that it is a role as opposed to the name of
the relationship.

When labeling an association, we wuse either a
relationship name or a role name (not both), whichever
communicates a more thorough understanding of the
model.

1..1

Patient

-amount
-insurance carrier

F primary
insurance
carrier

+make appointment()
+calculate last visit()
+change status()

+provides medical history()

» Three examples of associations are
portrayed:

1. An Invoice is AssociatedWith a Purchase
Order (and vice versa),

2. a Pilot Flies an Aircraft , and

3. a Spare Tire IsLocatedIn a Trunk.

 Also, notice that there is a small solid
triangle beside the name of the
relationship.
— The triangle allows a direction to be

associated with the name of the
relationship.

Invoice

AssociatedWith

Purchase Order

Pilot

0..* 1

Flies »

Aircraft

Spare Tire

0..* 0..*

IsLocatedIn »

Trunk

0..1 0..1

 Relationships also have
multiplicity, which documents
how an instance of an object can
be associated with other
Instances.

Numbers are placed on the
association path to denote the
minimum and maximum
instances that can be related
through the association in the
format minimum number..
maximum number (see next
Figure).

Exactly one

Department

A department has
one and only one
boss.

ZaT0 0T mors

Employee

Child

An employee has
zero to many
children.

{Jne or more

Boss

Employee

A boss is responsible
for one or more
employees.

Zero or one

Employee

An employee can
be married to zero
O ONE SPOoLse.

Specified range

Employee

Yacation

An employee can
take from two to
four vacations each
year.

Multiple, disjoint
ranges

Employee

1.

3.5

Committee

An employee is a
member of one to
three or five
committess.

» There are times when a relationship itself has associated properties,
especially when its classes share a many-to-many relationship.

— In these cases, a class called an assocliation class is formed, which has its
own attributes and operations.

— It is shown as a rectangle attached by a dashed line to the association path,
and the rectangle’'s name matches the label of the association. Think about
the case of capturing information about illnesses and symptomes.

* Another way to decide when to use an association class is when
attributes that belong to the intersection of the two classes involved

In the association must be captured.

Student

Course

Person

0.*

Company

Grade

T
Student Grade Course

av

Joh

Job

Company

9 4

» We can visually think about an association class. For example, in the
figure before, the Grade idea is really an intersection of the Student

and Course classes, because a grade exists only at the intersection of
these two ideas.

* Another example shown in the figure is that a job may be viewed as
the intersection between a Person and a Company.

 Most often, classes are related through a normal association;
however, there are two special cases of an association that you will
see appear quite often: generalization and aggregation.

A generalization:
« Represents a-kind-of relationship between >
multiple classes.

* A generalization association shows that one class (subclass) inherits
from another class (superclass), meaning that the properties and
operations of the superclass are also valid for objects of the subclass.

* The generalization path is shown with a solid line from the subclass
to the superclass and a hollow arrow pointing at the superclass.

 Remember that the generalization relationship occurs when you
need to use words like “is a kind of” to describe the relationship.

Animal Person

Bird Fish Physician Patient
N £
I |
Cardinal Trout General Practitioner Specialist

* The figures above state that Cardinal is a-kind-of Bird, which is a-
kind-of Animal; a General Practitioner is a-kind-of Physician, which is
a-kind-of Person

An aggregation:

« Represents a logical a-part-of relationship 0.* IsPartOf » 1 >
between multiple classes or a class and itself.

» Is a special form of an association.

« Aggregation is used to portray logical a-part-of relationships and is
depicted on a UML class diagram by a hollow or white diamond.

* Logical implies that it is possible for a part to be associated with
multiple wholes or that is relatively simple for the part to be
removed from the whole.

* For example, think about a doctor’s office that has decided to create health
care teams that include doctors, nurses, and administrative personnel.

* As patients enter the office, they are assigned to a health care team, which
cares for their needs during their visits. We could include this new
knowledge by adding two new classes (Administrative Personnel and
Health Team) and aggregation relationships from the Doctor, the Nurse,
and the new Administrative Personnel classes to the new Health Team
class.

» A diamond is placed nearest the class representing the aggregation (health
care team), and lines are drawn from the diamond to connect the classes
that serve as its parts (doctors, nurses, and administrative personnel).

» Typically, you can identify these kinds of associations when you need

to use words like “is a part of” or “is made up of” to describe the
relationship.

* From a UML perspective, there are two types of aggregation
associations: aggregation and composition.

e For examp|e: Employee Department

1. IsPartOf » 1%

— an instance of the Employee class IsPartOf an >

instance of at least one instance of the

Department class,

— an instance of the Wheel class IsPartOf an Wheel Vehicle
1..* 1sPartOf » 1

instance of the Vehicle class, and @

— an instance of the Desk class IsPartOf an
instance of the Office class.

Desk Office

* Obviously, in many cases an employee can be 0. IsParOf) 1

associated with more than one department,

and it is relatively easy to remove a wheel
from a vehicle or move a desk from an office.

A composition:

« Represents a physical a-part-of relationship 1.* IsPatOf » 1
between multiple classes or a class and itself : .

» Is a special form of an association.

« Composition is used to portray a physical part of relationships and is
shown by a black diamond.

 Physical implies that the part can be associated with only a single
whole.

Door Car For example in the next figure 3
1.* IsPartOf » 1
physical compositions are illustrated: an
instance of a door can be a part of only
a single instance of a car, an instance of
Room Building a room can be a part of an instance
1. IsPartOf » 1 . o
4 only of a single building, and an
instance of a button can be a part of
only a single mouse.

Button 1 sPartOf » 1 Mouse
¥ IsPart
&

« For example in the next figure 3 physical compositions are illustrated: an instance
of a door can be a part of only a single instance of a car, an instance of a room can
be a part of an instance only of a single building, and an instance of a button can
be a part of only a single mouse.

 However, in many cases, the distinction that you can achieve by including
aggregation (white diamonds) and composition (black diamonds) in a class
diagram might not be worth the price of adding additional graphical notation for
the client to learn.

» Therefore, many UML experts view the inclusion of aggregation and composition
notation to the UML class diagram as simply “syntactic sugar” and not necessary
because the same information can always be portrayed by simply using the
association syntax.

Your turn! A simple task

* Create a class diagram based on the CRC cards you created for
previous task!

1.
2.

3.

5.

Create CRC Cards
Review CRC Cards

— review the CRC cards to determine if
additional candidate objects, attributes,
operations, and relationships are missing

Role-Play the CRC Cards
Create Class Diagram

Review Class Diagram

— challenging the reasons for including the
information contained in the model

Incorporate Patterns

Review the Model (see
verifying & validating
CRC cards and class
diagram)

. When we finish creating a class diagram, it can he the
case that the class diagram is fully populated with all the
classes and relationships for a real world system, thus
the class diagram can hecome very difficult to interpret
(i.e., can be very compiex) ... C

1.4
SIMPLIFYING
CLASS DIAGRAM

1. One way to simplify the class diagram is to show only
concrete classes.

— However, depending on the number of associations that are
connected to abstract classes—and thus inherited down to the
concrete classes—this particular suggestion could make the
diagram more difficult to comprehend.

2. A second way to simplify the class diagram is through the use of a
view mechanism.

— Views were developed originally with relational database management systems to
show only a subset of the information contained in the database.

— In this case, the view would be a useful subset of the class diagram, such as

« A first view, i.e., a use-case view that shows only the classes and relationships relevant
to a particular use case.

» A second view could be to show only a particular type of relationship: aggregation,
association, or generalization.

* A third type of view is to restrict the information shown with each class, for example,
show only the name of the class, the name and attributes, or the name and operations.

3. A third approach to simplifying a class diagram is through the use
of packages (i.e., logical groups of classes).

— To make the diagrams easier to read and keep the models at a reasonable level
of complexity, the classes can be grouped together into packages.

— In the case of class diagrams, it is simple to sort the classes into groups based
on the relationships that they share.

— These view mechanisms can be combined to further simplify the diagram.

1.9
OBJECT
DIAGRAMS
(BRIEF)

* Although class diagrams are necessary to document the structure of
the classes, a second type of static structure diagram, called an object
diagram, can be useful in revealing additional information.

* An object diagram is essentially an instantiation of all or part of a class
diagram.

* Instantiation means to create an instance of the class with a set of
appropriate attribute values.

* Object diagrams can be very useful when trying to uncover details of
a class.

Participant

-lastname
-firstname
-address
-phone
-birthdate

-fage

Patient
-amaount schedules »
-insurance carrier
+make appointmenti) 1 b
+calculate last visit()
+change status()
+provide medical history() 1.1)
- Appointment
* * ; Doct
- 0. -time 0.* assignedTo b 1..° il
-date

+primary ~reason

Insurance +cancel without notice()

carrier

suffers » Sy
< |cname
John Doe: Patient Appl1: Appointment Dr. Smith: Doctor

lastname = Doe | time = 3:00 L lastname = Smith
firstname = John date = 772012 firstname = Jane
address = 1000 Main 5t reason = Pain in Neck address = Doctor’s Clinic
phone = 555-555-5555 phone = 999-999-9999
birthdate = 01/01/72 birthdate : 12/12/64
[age =40 Symptom1: § m {ape = 48
amount = 0.00 1 ympto
insurance carrier = |1} Health Ins name = Muscle Pain

1.6
VERIFYING &
VALIDATING THE
STRUGTURAL
MODEL

* First, every CRC card should be associated with a class on the class
diagram, and vice versa.

— In the appointment example, the Old Patient class represented by the CRC card
does not seem to be included on the class diagram.

— However, there is a Patient class on the class diagram. The Old Patient CRC card
most likely should be changed to simply Patient.
» Second, the responsibilities listed on the front of the CRC card must
be included as operations in a class on a class diagram, and vice
versa.

— The make appointment responsibility on the new Patient CRC card also appears
as the make appointment() operation in the Patient class on the class diagram.

— Every responsibility and operation must be checked.

* Third, collaborators on the front of the CRC card imply some type of
relationship on the back of the CRC card and some type of
association that is connected to the associated class on the class
diagram.

— The appointment collaborator on the front of the CRC card also appears as
another association on the back of the CRC card and as an association on the
class diagram that connects the Patient class with the Appointment class.

 Fourth, attributes listed on the back of the CRC card must be included
as attributes in a class on a class diagram, and vice versa.

— For example, the amount attribute on the new Patient CRC card is included in
the attribute list of the Patient class on the class diagram.

* Fifth, the object type of the attributes listed on the back of the CRC card
and with the attributes in the attribute list of the class on a class
diagram implies an association from the class to the class of the object
type.

— For example, technically speaking, the amount attribute implies an association
with the double type.

— However, simple types such as int and double are never shown on a class diagram.

— Furthermore, depending on the problem domain, object types such as Person,
Address, or Date might not be explicitly shown either.

— However, if we know that messages are being sent to instances of those object
types, we probably should include these implied associations as relationships.

e Sixth, the relationships included on the back of the CRC card must be
portrayed using the appropriate notation on the class diagram.

— For example, instances of the Patient class are a-kind-of Person, it has instances of
the Medical History class as part of it, and it has an association with instances of
the Appointment class. Thus, the association from the Patient class to the Person
class should indicate that the Person class is a generalization of its subclasses,
including the Patient class; the association from the Patient class to the Medical
History class should be in the form of an aggregation association (a white
diamond); and the association between instances of the Patient class and
instances of the Appointment class should be a simple association.

e Sixth, the relationships included on the back of the CRC card must be
portrayed using the appropriate notation on the class diagram.

— However, when we review the class diagram example, this is not what we find. If
you recall, we included in the class diagram the transaction pattern. When we did
this, many changes were made to the classes contained in the class diagram. All of
these changes should have been cascaded back through all of the CRC cards. In
this case, the CRC card for the Patient class should show that a Patient is a-kind-of

Participant (not Person) and that the relationship from Patient to Medical History
should be a simple association

» Seventh, an association class, such as the Treatment class, should be
created only if there is indeed some unique characteristic (attribute,
operation, or relationship) about the intersection of the connecting
classes.

— If no unique characteristic exists, then the association class should be removed

and only an association between the two connecting classes should be displayed.

* Finally, as in the functional models, specific representation rules must
be enforced.

— For example, a class cannot be a subclass of itself. The Patient CRC card cannot

list Patient with the generalization relationships on the back of the CRC card, nor
can a generalization relationship be drawn from the Patient class to itself.

-
[Structural Models ,J

Including

CRC Cards Class Diagram Object Diagram

Contains Represents Contains

Contains

Responsibilities

Instancef
Collaborators
-

Associations/
Relationships

HasKinds
This figure portrays the AssocialedWilh =) "\ ~ .
associations among the AmocatedWith — | Asecaietin ((Asocation) Aggreation) Generatzation)
AssociatedWith asKinds HasKinds
structural models rasiind

|

(Association Class j [Cnmpusiﬁm]

* CRC cards capture the essential elements of a class.

e Class and object diagrams show the underlying structure of an object-
oriented system.

» Constructing the structural model is an iterative process involving:
textual analysis, brainstorming objects, role playing, creating the
diagrams, and incorporating useful patterns.

* Object diagrams can be used to help identifying details of the class
diagrams

 Verifying & Validating the Structural Model ensure the consistency of the
Structural Model

 Systems Analysis and Design: An Object Oriented Approach with UML
5th ed. Alan Dennis, Barbara Haley Wixom, and Roberta M. Roth ©
2015

Your turn! Do it in pair

Draw a class diagram for each of following situations!

1. Whenever new patients are seen for the first time, they complete a
patient information form that asks their name, address, phone
number, and insurance carrier, which are stored in the patient
information fi le. Patients can be signed up with only one carrier,
but they must be signed up to be seen by the doctor. Each time a
patient visits the doctor, an insurance claim is sent to the carrier
for payment. The claim must contain information about the visit,
such as the date, purpose, and cost. It would be possible for a
patient to submit two claims on the same day.

Your turn! Do it in pair

Draw a class diagram for each of following situations!

2. The state of Georgia is interested in designing a system that will
track its researchers. Information of interest includes researcher
name, title, position, researcher’s university name, university
location, university enrollment, and researcher’s research interests.

Researchers are associated with one institution, and each
researcher has several research interests.

