Pemrograman Fungsional

Komputasi, Ekspresi, Datatype

¢

Ade Azurat
Kamis, 21 September 2020

AKULTAS

)
ILMU

KOMPUTER

Review Diskusi Pekan 01 Scele

e Bahasa lain dalam rumpun deklaratif

Prolog

SQL

Review Diskusi Pekan 01 Scele

e Bahasa lain dalam paradigma fungsional

* Erlang

* Elixir

* Miranda
* Lisp

* Clojure

* F#

* Javascript

Review Diskusi Pekan 01 Scele

* GraphQL - SQL, declarative?

* GraphQL termasuk declarative seperti SQL

* Belum akan sepenuhnya menggantikan microservices

Do

Review Diskusi Pekan 01 Scele

 Lambda di Java

* Anonymous Inner Class

e Stream API

Review Diskusi Pekan 01 Scele

 Goodbye 00?

No silver bullet

Masing-masing punya kelebihan

Strukturisasi dan abstraksi dari OO masih membantu

Do

Selalu kritis!

Agenda dan Learning Objective

* Agenda
* Model komputasi
* Ekspresi, values, type
* Datatype

* Learning Objective

* Memahami model komputasi Fungsional. Diberikan sebuah
program, dapat menjelaskan cara proses eksekusinya

* Memahami konsep ekspresi sebagai bagian dari proses
pembuatan algoritma. Diberikan permasalahan, dapat
menyusun ekspresi sebagai penyusun algoritma dan
penyelesaian masalah

* Memahami representasi datatype. Diberikan permodelan
masalah, dapat menyusun abstract data type yang

berkesesuaian. ;)

Computation by Calculation

e Computation by calculation is a simple concept that everyone should be
familiar with, since it’s not unlike ordinary arithmetic calculation. For
example:

3 * (9 + 5)
= 3 *x 14
= 42

* However, since we want computers to perform these tasks, we are also
interested in issues such as efficiency:
3 * (9 + 5)
= 3*9 4+ 3*5
= 27 + 3*5
= 27 + 15
= 42

* Same answer, but the former was more efficient than the latter,
since it took a fewer number of steps.

Abstraction

* We are also interested in abstraction: the process of recognizing a
repeating pattern, and capturing it succinctly in one place instead of
many.

* For example:
3* (9+5) 4* (6+2) 7* (8+1)
This repeating pattern can be captured as a function:
easy X y z = x*(y+z)
Then each instance can be replaced by:
easy 3 9 5 easy 4 6 2 easy 7 8 1

* We can also perform calculations with symbols. For example, we can
prove thateasy a b ¢ = easy a c b:
easy a b ¢

= a* (b+c) { unfold }
= a* (c+b) { commutativity of + }

= easy a c b { fold }

Expressions, Values, and Types

* The objects on which we calculate are called expressions.

* When no more unfolding (of either a primitive or user-defined function) is
possible, the resulting expression is called a value.

* Every expression (and therefore every value) has a type.
(A type is a collection of expressions with common attributes.)

e Wewriteexp :: T tosaythatexpression exp has type T.
* Examples:
* Atomic expressions:
42 :: Integer, ’'a’ :: Char, True :: Bool
e Structured expressions:
[1,2,3] :: [Integer] - a list of integers
("b” ,4) :: (Char,Integer) —a pair consisting of
a character and an integer
* Functions:
(+) :: Integer -> Integer -> Integer

easy :: Integer -> Integer -> Integer -> Integer

Abstraction

* Our derivation of the function easy is a good example of the use of the
abstraction principle: separating a repeating pattern from the particular
instances in which it appears. In particular, the example demonstrates
functional abstraction.

* Naming is an even simpler kind of abstraction:
let pi = 3.14159
in 2*pi*rl + 2*pi*r2

 Data abstraction is the use of data structures to store common values on
which common operations may be applied in an abstract manner.

e The “circle areas” example from the text demonstrates all three kinds of
abstraction.

“Circle Areas” Example

* Original program:
totalArea = pi*rl”*2 + pi*r272 + pi*r372

* A more abstract program:

totalArea =

listSum [circArea rl, circArea r2, circArea r3]
listSum [] = 0
listSum (a:as) = a + listSum as

circArea r = pi*r”*2

* The new program is longer than the old — in what ways is it better?

* The code for the area of a circle has been isolated (using functional abstraction),
thus minimizing errors and facilitating change and reuse.

 The number of circles has been generalized (via data abstraction)
from three to an arbitrary number, thus anticipating change and reuse.

Evaluation: Proof by Calculation

* Proof that the new totalArea is equivalent to the old:

listSum [circArea rl, circArea r2, circArea r3]
=» { unfold listSum }

circArea rl + listSum [circArea r2, circArea r3]
=» { unfold listSum }

circArea rl + circArea r2 + listSum [circArea r3]
=» { unfold listSum }

circArea rl + circArea r2 + circArea r3 + listSum []
=» { unfold listSum }

circArea rl + circArea r2 + circArea r3 + 0
=» { unfold circArea (three places) }

pi*rl*2 + pi*r272 + pi*r3*2 + 0

=>» { simple arithmetic }

pi*rl*2 + pi*r272 + pi*r3/2

Defining New Datatypes

* The ability to define new data types in a programming language is
important.
* Kinds of data types:
* enumerated types
* records (or products)
* variant records (or sums)
* recursive types
* Haskell’'s data declaration provides these kinds of data types in a

uniform way that abstracts away from their implementation details, by
providing an abstract interface to the newly defined type.

* Before looking at the example from Chapter 2, let’s look at some simpler
examples.

The Data Declaration

* Example of an enumeration data type:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving Show

* The names Sun through Sat are constructor constants (since they have
no arguments) and are the elements of the type.

* For example, we can define:

valday
valday
valday
valday
valday
valday
valday
valday

Hugs> valday 4

Wed

So WD

: Integer -> Day

Sun
Mon
Tue

= Wed

Thu
Fri

= Sat

Constructors & Patterns

e Constructors can be matched by patterns.

* For example:
dayval :: Day -> Integer
dayval Sun
dayval Mon
dayval Tue
dayval Wed
dayval Thu
dayval Fri
dayval Sat

1| [| | A | I [
SSoodkdh WN R

Hugs> dayval Wed
4

Other Enumeration Data Type Examples

data Bool = True | False -- predefined in Haskell
deriving Show

data Direction = North | East | South | West
deriving Show

data Move = Paper | Rock | Scissors
deriving Show

beats :: Move -> Move
beats Paper = Scissors
beats Rock = Paper

beats Scissors = Rock

Hugs> beats Paper
Scissors

Variant Records

* More complicated data types:
data Tagger = Tagn Integer | Tagb Bool

* These constructors are not constants — they are functions:
Tagn :: Integer -> Tagger
Tagb :: Bool -> Tagger

* As for all constructors, something like “Tagn 12”

e Cannot be simplified
(and thus, as discussed in Chapter 1, it is a value).

e Can be used in patterns.

Example functions on

number (Tagn n) = n
boolean (Tagb b) = Db

isNum (Tagn) = True
isNum (Tagb) = False

isBool x = not (isNum x)

Hugs> :t number
number :: Tagger -> Integer

Hugs> number (Tagn 3)
3

Hugs> isNum (Tagb False)
False

Another Variant Record Data Type

data Temp = Celsius Float
| Fahrenheit Float
| Kelvin Float

* We can use patterns to define functions over this type:

toKelvin (Celsius c) = Kelvin (c + 272.0)
toKelvin (Fahrenheit f) =

Kelvin (5/9*%(£-32.0) + 272.0)
toKelvin (Kelvin k) = Kelvin k

Finally: the Data Type from the Text

* The Shape data type from Chapter 2 is another example of a variant
data type:
data Shape = Rectangle Float Float
| Ellipse Float Float
| RtTriangle Float Float
| Polygon [(Float,Float))]
deriving Show

* Thelastline —“deriving Show” —tells the system to build a show
function for the type Shape (more on this later).

* We can also define functions yielding refined shapes:

circle, square :: Float -> Shape
circle radius = Ellipse radius radius
square side = Rectangle side side

Functions over

* Functions on shapes can be defined using pattern matching.

area :: Shape -> Float
area (Rectangle sl s2) = sl*s2
area (Ellipse rl r2) = pi*rl*r2
area (RtTriangle sl s2) = (sl*s2)/2
area (Polygon (vl:pts)) = polyArea pts
where polyArea :: [(Float,Float)] -> Float

polyArea (v2:v3:vs) = triArea vl v2 v3 +
polyArea (v3:vs)
polyArea =0

Note use of auxiliary function.
Note use of nested patterns.
Note use of wild card pattern (which matches anything).

Algorithm for Computing Area of Polygon

totalArea = area (triangle [A,B,C]) + area (polygon[A,C,D,E,F])

TriArea

triArea vl v2 v3 =
let a = distBetween vl v2
b = distBetween v2 v3
c = distBetween v3 vl
s = 0.5*% (a+b+c)
in sqrt (s*(s-a)*(s-b)*(s-c))

distBetween (x1,yl) (x2,y2)
= sqrt ((x1-x2)*2 + (yl-y2)*2)

¥

R

Selamat BeLajar dan Berlatih!

Silahkan baca bab 1-3 buku Haskell School of
Expression

atau bab 1-4 buku Haskell The Craft of Functioal
Programming

KOMPUTER

