

ALKUNA

Dr. rer. nat. Noverra M. Nizardo Departemen Kimia FMIPA UI

1

Jenis dan Penamaan Alkuna

Jenis alkuna:

 $CH_3CH_2CH_2-C\equiv C-H$ alkuna terminal

 $CH_3CH_2-C\equiv C-CH_3$ alkuna internal

Penamaan Alkuna:

- 1. Rantai utama yang mengandung ikatan rangkap 3
- 2. Ikatan rangkap 3 mendapat nomor paling kecil
- 3. Akhiran menggunakan –una
- 4. Ingat aturan penamaan lainnya!

3-butun-2-ol CH_3CH_2 — $C\equiv C$ — $C\equiv CH$

СН3-СН-С≡С-Н ÓН

2,5-dimetil-3-heptuna

1,3-heksadiuna

$$CH_3-C\equiv C-CH-CH_2-CH_3$$
 OCH_3

 $CH \equiv C - CH_2CH = C(CH_3)_2$ 5-metil-4-heksen-1-una

4-metoksi-2-heksuna

2

Keasaman Pada Alkuna

• Karakter *s* yang lebih banyak pada hibridisasi *sp* meningkatkan keasaman **Tips:** Ingat materi asam-basa di pendahuluan!

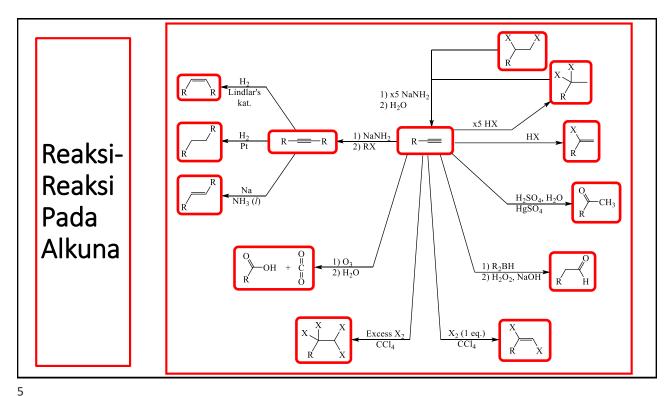
	Senyawa	Basa Konjugasi	Hibridisasi	Karakter s	pKa	
	H H H-C-C-H I I H H	H H H-C-C:- H H	sp^3	25%	50	Asam lemah
	C = C	H $c = c$	sp^2	33%	44	
l	NH ₃	: NH ₂	(amonia)		35	
l	н−с≡с−н	н—с≡с:⁻	sp	50%	25	
L	к −-ö́н	R—ö:⁻	(alkohol)		16-18	Asam kuat

3

Reaksi Asam-Basa Pada Alkuna

 $R-C \equiv C - H + B$ $R-C \equiv C + H-B^+$ alkuna terminal pKa = 25 $R-C \equiv C + H-B^+$

H yang bersifat asam pada alkuna terminal membuat reaksi asam-basa dapat terjadi untuk membentuk ion asetilida


Ion asetilida yang terbentuk dapat berperan sebagai nukleofil kuat pada reaksi S_N2

 $CH_3CH_2-C\equiv C$: $^{\dagger}Na + H_3C$ \longrightarrow $CH_3CH_2-C\equiv C-CH_3 + NaI$

Ion asetilida yang terbentuk dapat berperan sebagai basa kuat pada reaksi **E2**

4

2-bromo-2-metilpropana 3° alkil halida

Mekanisme Adisi Elektrofilik Pada Alkuna: Hidrohalogenasi

- Adisi dilakukan dengan penyerangan ik. π ke H untuk membentuk karbokation yang lebih stabil
 -> mengikuti aturan Markovnikov!
- Karbokation vinil yang akan terbentuk membuat reaksi adisi pertama pada alkuna tidak sereaktif pada alkena

ktif pada alkena
$$H-C \equiv C-CH_2CH_3$$
 $H = C-CH_2CH_3$ $H = C-CH_2$ $H = C-CH_2$

karbokation vinil

 Adisi kedua akan membentuk karbokation pada C yang mengikat halogen karena terstabilkan oleh resonansi -> mengikuti aturan Markovnikov!

6

Mekanisme Adisi Elektrofilik Pada Alkuna: Halogenasi

- Penyerangan ik. π membentuk jembatan ion halonium
- Cl- bertindak sebagai nukleofil membuka jembatan ion halonium dengan penyerangan dari arah belakang

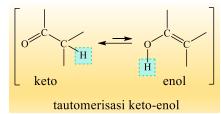
$$\begin{array}{c} : \overset{\cdot}{\text{CI}} - \overset{\cdot}{\text{CI}} : \\ \text{CH}_3 - \overset{\cdot}{\text{C}} = \overset{\cdot}{\text{C}} - \overset{\cdot}{\text{CH}_3} \\ \text{2-butuna} \end{array} \xrightarrow[\text{lambat}]{} \overset{\cdot}{\text{H}_3} \overset{\cdot}{\text{C}} = \overset{\cdot}{\text{C}} \overset{\cdot}{\text{CH}_3} \\ : \overset{\cdot}{\text{CI}} : \\ \text{CH}_3 \xrightarrow{} \overset{\cdot}{\text{CH}_3} \xrightarrow{} \overset{\cdot}{\text{CH}_3} \\ \text{trans dihalida} \end{array}$$

$$\begin{array}{c} : \overset{\cdot}{\text{Cl}} - \overset{\cdot}{\text{Cl}} : \\ \text{CH}_3 & \overset{\cdot}{\text{Cl}} & \overset{\cdot}{\text{Cl}} : \\ \text{CH}_3 & \overset{\cdot}{\text{lambat}} & \overset{\cdot}{\text{H}_3\text{CW}} \overset{\cdot}{\text{C}} - \overset{\cdot}{\text{C}} - \overset{\cdot}{\text{CH}_3} \\ \text{Cl} & \overset{\cdot}{\text{Cl}} : \overset{\cdot}{\text{Cl}} : \\ \text{cl} & \overset{\cdot}{\text{Cl}} : \\ \text{tetrahalida} \\ \end{array}$$

jembatan ion halonium

7

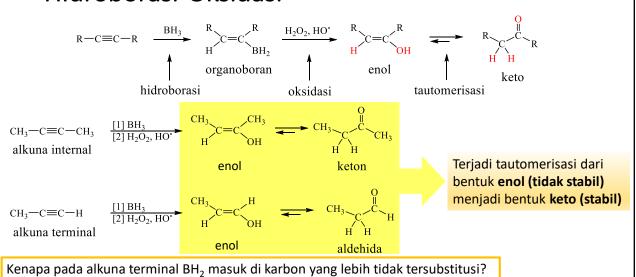
Mekanisme Adisi Elektrofilik Pada Alkuna: Hidrasi


- Adisi dilakukan dengan penyerangan ik. π ke H dari H_3O^+ untuk membentuk karbokation yang lebih stabil
- H₂O bertindak sebagai nukleofil pada tahap 2 -> terbentuk enol

Mekanisme Adisi Elektrofilik Pada Alkuna: Hidrasi

Enol yang terbentuk akan mengalami tautomerisasi

Apa yang dimaksud tautomerisasi?


Mekanisme tautomerisasi dalam suasana asam:

Coba sendiri: Bagaimana mekanisme tautomerisasi dalam suasana basa?

9

Mekanisme Adisi Elektrofilik Pada Alkuna: Hidroborasi-Oksidasi

10