Minggu-6 – Notasi Asymptot

Algoritma & Pemrograman Saintifik

Gatot F. Hertono, Ph.D

Departemen Matematika SCMA601401

Asymptotic Notation: Order of Growth

Background

Suppose, in worst case, a problem can be solved by using two different algorithms, with time complexity:

<u>Algorithm A</u>:

<u>Algorithm B</u>:

f(n) = 400n + 23

 $g(n) = 2n^2 - 1$

Which one is better?

n	3n ²	14n+17	
1	3	31	
10	300	157	
100	30,000	1,417	
1000	3,000,000	14,017	
10000	300,000,000	140,017	

Solution: Ignore the constants & low-order terms.

we use Asymptotic Notation (Ω , Θ dan O)

3n² > 14n+17 ∀ "large enough" n

Order of Growth

n	$\log_2 n$	n	$n\log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	1010	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Values (some approximate) of several functions important for analysis of algorithms

Ω, Θ and O notations

(b)

Names of Bounding Functions

- f(n) = O(g(n)) means C x g(n) is an upper bound on f(n);
- $f(n) = \Omega (g(n))$ means $C \ge g(n)$ is a lower bound on f(n);
- $f(n) = \Theta(g(n))$ means $C_1 \ge g(n)$ is an upper bound on f(n) and $C_2 \ge g(n)$ is a lower bound on f(n).

O (big Oh) Notation

$$\begin{split} f(n) &= O(g(n)): \ g(n) \text{ is an asymptotically upper} \\ \text{bound for } f(n). \quad i.e. \ f \text{ does not grow faster than } g. \\ \text{Formal definition:} \\ O(g(n)) &= \ \{f(n): \exists \ c > 0 \text{ and } n_0 > 0 \\ & \text{ such that } 0 \leq f(n) \leq cg(n) \\ & \text{ for all } n \geq n_0 \}. \end{split}$$

Remark: "f(n) = O(g(n))" means that

$$f(n) \in O(g(n)).$$

Examples:

(1) $n^2 + 2n = O(n^2)$. (2) $200n^2 - 100n = O(n^2)$. (3) $n \log_2 n = O(n^2)$. (4) $n^2 \log_2 n \neq O(n^2)$. (5) $\forall a, b > 1$, $\log_a n = O(\log_b n)$.

Example: $f(n) = n^3 + 20 n^2 + 100.n$, then $f(n) = O(n^3)$. *Proof*: $\forall n \ge 0, n^3 + 20 n^2 + 100.n \le n^3 + 20 n^3 + 100.n^3 = 121.n^3$.

Choose c = 121 and $n_0 = 0$, then it completes the definition.

Ω (big Omega) Notation

 $f(n) = \Omega(g(n))$: g(n) is an asymptotically lower bound for f(n).

Formal definition: $\Omega(g(n)) = \{f(n) : \exists c > 0 \text{ and } n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0\}$.

Examples:

(1) $200n^2 - 100n = \Omega(n^2) = \Omega(n) = \Omega(1)$. (2) $n^2 = \Omega(n)$. (3) $n^2 \neq \Omega(n^2 \log n)$. (3) Does f(n) = O(g(n)) imply $g(n) = \Omega(f(n))$? (4) Does $f(n) = \Omega(g(n))$ imply g(n) = O(f(n))?

Θ (Big Theta) Notation

 $f(n) = \Theta(g(n))$: g(n) is an asymptotically tight bound for f(n).

Formal definition: $\Theta(g(n)) = \{f(n) : \exists n_0 > 0, c_1 > 0 \text{ and } c_2 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0\}$.

Examples:

(1) $5n^2 - 2n + 5 = \Theta(n^2)$ (2) $5n^2 - 2n + 5 = \Theta(n^2 + \log n)$

Examples of Θ

$3n^2 + 7n + 8 = \Theta(n^2)$? $\exists c_1, c_2, \exists n_0, \forall n \geq n_0, c_1g(n) \leq f(n) \leq c_2g(n)$ True $1 \quad 1 \quad n \ge 8$ $3 \cdot n^2 < 3n^2 + 7n + 8 < 3n^2 + 7n^2 + 8 < 3n^2 + 7n^2 + 8 < 3n^2 + 7n^2 + 8n^2 + 8$ 3 8 $4 \cdot n^2$ $n^2 = \Theta(n^3)$? $\exists c_1, c_2, \exists n_0, \forall n \geq n_0, c_1g(n) \leq f(n) \leq c_2g(n)$ $0 \cdot n^3 \le n^2 \le c_2 \cdot n^3$

False, since C1,C2 must be >0

Examples

$$3n^{2} - 100n + 6 = O(n^{2}) \text{ because } 3n^{2} > 3n^{2} - 100n + 6$$

$$3n^{2} - 100n + 6 = O(n^{3}) \text{ because } .01n^{3} > 3n^{2} - 100n + 6$$

$$3n^{2} - 100n + 6 \neq O(n) \text{ because } c \cdot n < 3n^{2} \text{ when } n > c$$

$$3n^{2} - 100n + 6 = \Omega(n^{2}) \text{ because } 2.99n^{2} < 3n^{2} - 100n + 6$$

$$3n^{2} - 100n + 6 \neq \Omega(n^{3}) \text{ because } 3n^{2} - 100n + 6 < n^{3}$$

$$3n^{2} - 100n + 6 = \Omega(n) \text{ because } 10^{10^{10}}n < 3n^{2} - 100 + 6$$

$$3n^{2} - 100n + 6 = \Theta(n^{2}) \text{ because } O \text{ and } \Omega$$

$$3n^{2} - 100n + 6 \neq \Theta(n^{3}) \text{ because } O \text{ only}$$

$$3n^{2} - 100n + 6 \neq \Theta(n) \text{ because } \Omega \text{ only}$$

Think of the equality as meaning *in the set of functions*.

Properties

Note that if

$$f(n) = \Theta(g(n)),$$

then

$$f(n) = \Omega(g(n))$$
 and $f(n) = O(g(n))$.

In the other direction, if

$$f(n) = \Omega(g(n))$$
 and $f(n) = O(g(n))$,

then

$$f(n) = \Theta(g(n)).$$

Assignment: Based on the definition of Ω , Θ and O, prove that

 $f(n) = \Theta(g(n)) \quad \Leftrightarrow \quad f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

What does asymptotic property imply for an algorithm?

Basic asymptotic efficiency classes

1	constant
log n	logarithmic
n	linear
n log n	n-log-n
n²	quadratic
n ³	cubic
2 ⁿ	exponential
n!	factorial

O(1) O(log n) O(√n) O(n) O(n log n) O(n ²	1 ²) O(n ³)	O(2 ⁿ)	O(n2 ⁿ)	O(n!)
--	-------------------------------------	---------------------------	---------------------	-------

Time efficiency of nonrecursive algorithms

General Plan for Analysis

- Decide on parameter *n* indicating *input size*
- Identify algorithm's *basic operation*
- Determine *worst*, *average*, and *best* cases for input of size *n*
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n - 1])

//Determines the value of the largest element in a given array //Input: An array A[0..n - 1] of real numbers //Output: The value of the largest element in A $maxval \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > maxval $maxval \leftarrow A[i]$ return maxval

T(*n*) = *O*(?)

Example 2: Element uniqueness problem

ALGORITHM Unique Elements(A[0..n - 1])

//Determines whether all the elements in a given array are distinct //Input: An array A[0..n - 1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n - 2 do for $j \leftarrow i + 1$ to n - 1 do if A[i] = A[j] return false return true

T(*n*) = *O*(?)

Example 3: Matrix multiplication

```
ALGORITHM MatrixMultiplication(A[0..n - 1, 0..n - 1], B[0..n - 1, 0..n - 1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n - 1 do

C[i, j] \leftarrow 0.0

for k \leftarrow 0 to n - 1 do

C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]

return C
```

Example 5: Counting binary digits

ALGORITHM *Binary*(*n*)

```
//Input: A positive decimal integer n
//Output: The number of binary digits in n's binary representation
count \leftarrow 1
```

```
while n > 1 do
```

 $count \leftarrow count + 1$ $n \leftarrow \lfloor n/2 \rfloor$ **return** count

It cannot be investigated the way the previous examples are.