
Algoritma &
Pemrograman

Saintifik

Departemen Matematika

SCMA601401

Gatot F. Hertono, Ph.D

Minggu-8 – Pernyataan

Breaking News

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sebaran Nilai UTS

Statements

• Assignment:
To "assign" a variable means to symbolically associate a
specific piece of information with a name. Any operations
that are applied to this "name" (or variable) must hold true
for any possible values.

• Branching:
When an "Algorithm" makes a choice to do one of two (or
more things) this is called branching. The most common
programming "statement" used to branch is the "IF"
statement.

• Looping:
A Loop is used to repeat a specific block of code a over and
over. There are two main types of loops, for loops and while
loops.

In general, in the programming, statements can be distinguished as:

Source: http://www.cs.utah.edu/~germain/PPS/Topics/

Variable Assignment

The '=' symbol is the assignment operator which SHOULD NEVER be used
for equality (which is the double equals sign).

Warning, while the assignment operator looks like the traditional
mathematical equals sign, this is NOT the case. The equals operator is
'=='

 Expression could be a number : variable_name = 5;

 or a math expression : variable_name = 10 + 5 / 3 - 7;

 or a funciton call : variable_name = sin(5);

Syntax: variable_name = expression;

To evaluate an assignment statement:
1. Evaluate the "right side" of the expression (to the right of the equal sign).
2. Once everything is figured out, place the computed value into the variables

bucket.

Example

B1 = 10.5;

A1 = input(‘What is the current odometer reading?’);

A2 = input(‘How many gallons of gas did you pump?’);

Miles = A1 - B1;

Mileage = Miles/A2;

A = ‘The mileage is’;

Tally = Tally + 1;

disp(A);

disp(Mileage);

Prev = 0;
Curr = 1;
Next = Prev + Curr;
Prev = Curr;
Curr = Next

Prev Curr Next

0
1

1
1

1

Branching
In a computer program, the algorithm often must choose to do one of two
things depending on the "state" of the program.

As an example:
 If the grade is greater than 90, then
 give the student an A,
 otherwise
 if the grade is greater than 80,
 give the student a B,... etc.

Syntax:

if (something is true)

 do this code;

 do all code before the end or else;

 do not do anything in the else "block" of code

 else

 % if the something is false (NOTE: we don't have to test this)

 do other code;

 end

Source: http://www.cs.utah.edu/~germain/PPS/Topics/

Examples
grade = % some_number;

 if (grade > 75)

 fprintf('congrats, your grade %d is passing\n', grade);

end

Y

N

if (money < 5)

 do this;
 elseif (money < 10)

 do that;
 elseif (money < 1000)

 do a lot of stuff;
 else

 do a default action when nothing above is true;

 end

Y

N
Y

Y

N

N

Looping
Loops - or repeating yourself
Loops allows us to repeat a single (or several) lines of code over and over again.
This allows us to "write once" and then "execute many times“.

Source: http://www.cs.utah.edu/~germain/PPS/Topics/

There are TWO loops that you must memorize.
 The For Loop: Which is used when we know how many times the loop will

execute.
 The While Loop: When we don't know how many times, but want to

continue until a certain condition is not true.

Nesting Loops
It is perfectly legal to place the code for one loop inside the code of another loop.
What this means is that the "inner" loop is executed one time in its entirety for
every time the outer loop executes.

As an example, suppose the outer loop
executes 10 times and the inner loop

executes 10 times, the code inside the inner
loop is executed 100 times!

for i = 1 to 10

 for j = 1 to 10

 do these codes
 end

end

Looping (cont.)

Syntax:

for var_index = start_value : increment_value : end_value

 % Do this code

end

% implied increment by 1

 for var_index = start_value : end_value

 % Do this code

 end

while (condition is true / boolean expression)

 % do something

 % Note: the "something" should eventually result

 % in the condition being false

 end

Examples
number = input(‘Input any number: ‘);

count = 0;

while (number > 1)

 number = number / 2;

 count = count + 1;

end ;
Y

N

while (y < 10)

 x = x + 1;

end;

while (true)

 disp('hello');

end;

Infinite
loops

for i=1:10

 disp(i);

 for j=1:i

 disp(j);

 for k=1:j

 disp(i*j*k)

 end

 end

end

Exercises

Build a program to compute:

ex = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+ ⋯

𝑥𝑛

𝑛!
, −∞ < 𝑥 < ∞

and
Number Guess Games:
The computer will come up with a random
number between 1 and 1000. The player must
then continue to guess numbers until the player
guesses the correct number. For every guess, the
computer will either say "Too high" or "Too low",
and then ask for another input. At the end of the
game, the number is revealed along with the
number of guesses it took to get the correct
number.

