
T O P I C 9

P H Y S I C A L
A R C H I T E C T U R E

D E S I G N

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives

1. Able to explain the differences among the components of

computer physical architecture

2. Able to explain server-based, client-based, and client-server

physical architecture.

3. Able to create network model by using deployment diagram

4. Able to explain the influence of non-functional requirement

toward physical architecture layer design

5. Able to create hardware and software architecture document

Learning Objectives

• Architecture design

– Plans for how the system will be distributed across computers

and what the hardware and software will be used for each

computer.

– Architectural Component consist of software and hardware

• Hardware and software specification

– Describes the hardware/software components in detail to aid

those responsible for purchasing those products.

Architectural Components (Functions) of

Software

1. Data storage

2. Data access logic

– Processing required to access stored data

3. Application logic

– Logical processing of the application

4. Presentation logic

– Information display and user command processing

Architectural Design Purpose

• Determine what parts of the application software will be assigned to
what hardware.

• Hardware options:

– Clients

• Input/output devices employed by users

• PCs, laptops, handheld devices, cell phones

– Servers

• Larger computers storing software

• Accessible by many users

Computer Devices

1. Mainframe

2. Minicomputer

3. Microcomputer (personal computer)

Client Devices

1. Terminals

2. Microcomputer (personal computer)

3. Special purpose terminals(ATMs, kiosks, Palm Pilots, and

many others)

Architecture Choices

1. Server-based Architecture

2. Client-based Architecture

3. Client-server based Architecture

Server-Based Architecture

Client-Based Architecture

Client-Server Architecture (two-tiered)

Your Turn

Discuss characteristic, cost, and benefit of:

1. Server-based Architecture

2. Client-based Architecture

3. Client-server based Architecture

Client-Server Attributes

Benefits

 Scalable

Works with multiple

vendors/products of clients

and servers through

middleware

 Improved modularity of

web-based systems

No central point of failure

(backup servers)

Limitations

 Complexity to update in all

clients and servers

 Cost

 Server based arch. provides

highest economic of scale

 Total Cost of Ownership (4-5

times compare to server based

arch.)

Thick Client-Server Architecture (Two-

Tiered)

Three-Tiered (Thin) Client-Server

Architecture

Four-Tiered Client-Server Architecture

Selecting an Architecture Design

• Most systems are built to use the existing infrastructure in the organization, so often

the current infrastructure restricts the choice of architecture.

– For example, if the new system will be built for a mainframe-centric organization, a

server-based architecture may be the best option.

• Other factors such as corporate standards, existing licensing agreements, and

product/vendor relationships can also mandate what architecture the project team

needs to design.

• However, many organizations now have a variety of infrastructures available or are openly

looking for pilot projects to test new architectures and infrastructures, enabling a project

team to select an architecture based on other important factors

Selecting an Architecture Design

Cost of Infrastructure

• Personal computers are more than 1,000 times cheaper than

mainframes for the same amount of computing power.

– The personal computers on our desks today have more processing

power, memory, and hard disk space than the typical mainframe of

the past, and the cost of the personal computers is a fraction of

the cost of the mainframe.

• Client–server architectures also tend to be cheaper than client-based

architectures because they place less of a load on networks and thus

require less network capacity.

Cost of Development

• Developing application software for client–server computing is

extremely complex, and most experts believe that it costs four to five

times more to develop and maintain application soft ware for

client–server computing than it does for server-based computing.

• Developing application software for client-based architectures is

usually cheaper still, because there are many GUI development tools

for simple stand-alone computers that communicate with database

servers.

Ease of Development

• In most organizations today, there is a huge backlog of mainframe applications,

systems that have been approved but that lack the staff to implement them.

– The tools for mainframe-based systems oft en are not user friendly and require

highly specialized skills—skills that new graduates oft en don’t have and aren’t

interested in acquiring.

• In contrast, client-based and client–server architectures can rely on graphical user

interface GUI) development tools that can be intuitive and easy to use.

– The development of applications for these architectures can be fast and painless.

Unfortunately, the applications for client–server systems can be very complex

because they must be built for several layers of hardware (e.g., database servers,

Web servers, client workstations) that need to communicate effectively with one

another.

Interface Capabilities

• Typically, server-based applications contain plain, character-based interfaces, which

can be quite difficult to use.

• Reversely, most users of systems expect a GUI or a Web-based interface that they

can operate using a mouse and graphical objects. GUI and Web development tools

typically are created to support client-based or client–server applications; rarely can

server-based environments support these types of applications.

Control and Security

• The server-based architecture was originally developed to control and secure data,

and it is much easier to administer because all the data are stored in a single

location.

• In contrast, client–server computing requires a high degree of coordination among

many components, and the chance for security holes or control problems is much

more likely.

• Also, the hardware and software used in client–server architecture are still maturing

in terms of security.

Scalability

• Scalability refers to the ability to increase or decrease the capacity of

the computing infrastructure in response to changing capacity needs.

• The most scalable architecture is client–server computing:

– servers can be added to (or removed from) the architecture when processing

needs change.

– Also, can be upgraded at a pace that most closely matches the growth of the

application.

• In contrast, server-based architectures rely primarily on mainframe

hardware that needs to be scaled up in large, expensive increments.

Deployment Diagram

• Deployment diagrams are used to represent the relationships between

the hardware components used in the physical infrastructure of an

information system.

• There are times that the notation in deployment diagram should be

extended to better communicate the design of the physical

architecture layer.

Component of

Deployment

Diagram

Extended Component of Deployment Diagram

for Node Representation

Example of Deployment Diagram

Network Model Diagram

• The network model is a diagram that shows the major components of

the information system (e.g., servers, communication lines, networks)

and their geographic locations throughout the organization.

• There is no one way to depict a network model, and in many

experience, analysts create their own standards and symbols, using

presentation applications (e.g., PowerPoint) or diagramming tools

(e.g., Visio).

• In this case, we use UML’s deployment diagram.

• Creating the network model is a top-down exercise whereby we first

graphically depict all the locations where the application will reside.

Network Model Diagram

• The purpose of the network model is twofold:

– to convey the complexity of the system and to show how the system’s software

components will fit together.

– the diagram also helps the project team develop the hardware and software

specification.

• The components of the network model are

1. clients (e.g., personal computers, kiosks),

2. servers (e.g., database, network, communications, printer),

3. network equipment (e.g., Wi-Fi connections, Ethernet, cell phone network,

satellite links), and

4. external systems or networks (e.g., Internet service providers) that support the

application.

• Locations are the geographic sites related to these components.

Example of Network Model Diagram - High

level model

Example of Network

Model Diagram – Low

level model

Hardware and Software Specification

• The hardware and software specification is a document that

describes what hardware and software are needed to

support an application.

• The actual acquisition of hardware and software should be

left to the purchasing department or the area in the

organization that handles capital procurement.

Sample of Hardware and Software

Specification

Creating Hardware & Software Spec

• First, we need to define the software that will run on each

component.

– Operating system (e.g., Windows, Linux) and

– Special-purpose software on the client and servers (e.g., Oracle

database).

This document should consider any additional costs, such as

technical training, maintenance, extended warranties, and licensing

agreements (e.g., a site license for a software package).

Creating Hardware & Software Spec

– Second, we must create a list of the hardware that is needed to

support the future system.

• With the advent of mobile computing, cloud computing, the IoT, and Green IT,

this step is much more involved than it used to be.

• However, the low-level network model provides a good starting point for

recording the project’s hardware needs because each component on the diagram

corresponds to an item on this list.

• The list can include things like database servers, network servers, peripheral

devices (e.g., printers, scanners), backup devices, storage components, and any

other hardware component that is needed to support an application.

• At this time, you also should note the quantity of each item that will be needed.

Creating Hardware & Software Spec

– Third, we must describe, in as much detail as possible, the minimum

requirements for each piece of hardware. Typically, the project team

must convey requirements like the amount of processing capacity,

the amount of storage space, and any special features that should

be included.

Non-functional Requirements and Physical

Architecture Layer Design

– Creating a physical architecture layer design begins with the

nonfunctional requirements.

1. Refine the nonfunctional requirements into more-detailed requirements that

are then used to help select the architecture to be used (server-based, client-

based, or client–server)

2. Define what software components will be placed on each device. In a client–

server architecture, one also has to decide whether to use a two-tier, three-tier,

or n-tier architecture.

3. Then the nonfunctional requirements and the architecture design are used to

develop the hardware and software specification.

Non-functional Requirements and Physical

Architecture Layer Design

Four primary types of nonfunctional requirements can be

important in designing the architecture:

1. operational requirements

2. performance requirements

3. security requirements

4. cultural/political requirements

Your turn

Discuss four non-functional requirements that might

influence physical architecture design:

1. operational requirements

2. performance requirements

3. security requirements

4. cultural/political requirements

Operational Requirements

Performance Requirements

Security Requirements

Cultural/Political Requirements

Designing the Architecture

• Technical environment requirements, driven by business

requirements, often define the application architecture

• If not, other nonfunctional requirements become important

Nonfunctional Requirements and their

Implications for Architecture Design

