
T O P I C 6

B E H A V I O R A L
M O D E L L I N G

(S E B A G I A N M A T E R I
D I A D O P S I D A R I M A T A

K U L I A H R E K A Y A S A
P E R A N G K A T L U N A K)

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives

1. Able to explain the rules and component of sequence and

communication diagram

2. Able to explain how to create sequence and communication

diagram

3. Able to create sequence dan communication diagrams

4. Able to explain the correlation among behavioral, structural, and

functional model

Outline

1. Sequence Diagram

2. Communication Diagram

3. Behavioral State Machine

4. CRUDE Analysis

1 . 1
B E H A V I O R A L

M O D E L

Introduction

Remember that models in analysis phase can be classified into:

• Functional Model: represent system behavior

• Use Case Diagram, Activity Diagram

• Structural Model (Conceptual Model): represent system objects and

their relationships (People, Places, Things)

• Class Diagram, Object Diagram

• Behavioral Model: represent internal behavior of a system

• Interaction Diagram, Behavioral State Machines

We will focus on the Interaction Diagram (Sequence Diagram &

Communication Diagram)

Introduction

• Behavioral models

– describe the internal dynamic aspects of an information system

that supports the business processes in an organization.

– represent the internal behavior or dynamic view of an information

system.

• During analysis, behavioral models describe what the internal

logic of the processes is without specifying how the

processes are to be implemented.

– Later, in the design and implementation phases, the detailed design

of the operations contained in the object is fully specified.

2 Types of Behavioural Model

• First, there are behavioral models used to represent the underlying

details of a business process portrayed by a use-case model.

– Interaction diagrams (sequence and communication diagrams) are used for this

type of behavioral model.

– Interaction diagrams to show how actors and objects collaborate to provide the

functionality defined in a use case.

• Interaction diagrams allow the analyst to model the distribution of the behavior of the

system over the actors and objects in the system.

• Second, a behavioral model is used to represent the changes that

occur in the underlying data.

– Behavioral state machines.

Behavioural Models

• Analysts view the problem as a set of use cases (functional models)

supported by a set of collaborating objects (structural models)

– Behavioral models depict this view of the business processes:

• How the objects interact and form a collaboration to support

the use cases

• An internal view of the business process described by a use

case

• Creating behavioral models is an iterative process which may induce

changes in other models

1 . 2
I N T E R A C T I O N

D I A G R A M

Class Diagrams VS Interaction Diagrams

One of the primary differences between class diagrams and

interaction diagrams:

• Class diagram describes structure and interaction diagram

describes behavior

• A class diagram focus on the class level, whereas the interaction

diagrams focus on the object level.

Key definitions of Interaction Diagram

Components

1. An object is an instantiation of a class, i.e. an actual person,

place, or thing about which we want to capture the information.

• Example of classes might include doctor, patient, and appointment.

• The specific patients, such as Jim Maloney, Mary Wilson, and Theresa Marks are

considered objects—i.e. instances of the patient class.

2. Attributes, describes information about the object, such as a

patient’s name, birth date, address, and phone number.

3. Operations describes the behaviors of an instance of a class or an

action that an object can perform.

4. Messages represent information sent to objects to tell them to

execute one of their behaviors

Types of Interaction Diagrams

1. Sequence Diagrams - emphasize message sequence

2. Communication Diagrams - emphasize message flow

1 . 3
S E Q U E N C E
D I A G R A M

Sequence Diagram

❑ Illustrate the objects that participate in a use case and the

messages that pass between them over time for one use case.

❑ Represent dynamic model that shows the explicit sequence of

messages that are passed between objects in a defined

interaction.

❑ Because sequence diagrams emphasize the time-based ordering

of the activity that takes place among a set of objects, they are

very helpful for understanding real-time specifications and

complex use cases.

Sequence Diagram

❑ The sequence diagram can be a generic sequence diagram that shows

all possible scenarios for a use case, but usually each analyst develops a

set of instance sequence diagrams, each of which depicts a single

scenario within the use case.

❑ If we are interested in understanding the flow of control of a scenario by

time, we should use a sequence diagram to depict this information.

❑ The diagrams are used throughout the analysis and design phases.

❑ However, the design diagrams are very implementation specific, often

including database objects or specific user interface components as the

objects.

Sequence Diagram Example

Sequence Diagram Syntax

Sequence Diagram Syntax

Actor and Object

• Actors and objects that participate in the sequence are placed

across the top of the diagram using actor symbols from the use-

case diagram and object symbols from the object diagram

• Notice in the example before:

– The actors are aPatient, and aReceptionist;

– The objects are aPatient : Patient, aPatient : UnpaidBill, aPatient :

Appointment.

• For each of the objects, the name of the class of which they are an

instance is given after the object’s name (e.g., aPatient means that

aPatient is an instance of the Patient class).

A Lifeline

• A dotted line runs vertically below each actor and object to denote the lifeline of

the actors and objects over time (see Figure 6-1).

• Sometimes an object creates a temporary object; in this case, an X is placed at

the end of the lifeline at the point where the object is destroyed (not shown).

– For example, think about a shopping cart object for a Web commerce application.

– The shopping cart is used for temporarily capturing line items for an order, but once

the order is confirmed, the shopping cart is no longer needed.

– In this case, an X would be located at the point at which the shopping cart object is

destroyed.

• When objects continue to exist in the system after they are used in the sequence

diagram, then the lifeline continues to the bottom of the diagram.

Lifeline boxes and lifelines

An object do not have a lifeline until they are created

Lifeline

Lifeline box

Activation (Execution Occurrence) and

Object Destruction

• The period of time an object is handling a message

• The end of an object’s life is marked with an “X” at the end of the lifeline

(Object Destruction)

Occurance box

Message

• A message is a communication between objects that conveys information with the

expectation that activity will ensue. Two types of messages are typically used: operation

call and return.

• Operation call messages passed between objects are shown using solid lines connecting

two objects with an arrow on the line showing which way the message is being passed.

– The order of messages goes from the top to the bottom of the page, so messages

located higher on the diagram represent messages that occur earlier on in the

sequence, versus the lower messages that occur later.

• A return message is depicted as a dashed line with an arrow on the end of the line

portraying the direction of the return.

– The information being returned is used to label the arrow.

– However, because adding return messages tends to clutter the diagram, unless the

return messages add a lot of information to the diagram, they can be omitted (esp. for

void return value).

Message

• Represented with a message expression on an arrowed line between objects

Reply or Return messages

If return message is drawn (with the return variable written in it), draw it at

the end of an activation bar

If return message is not drawn, write the return variable in the sent

message: returnVar=message(parameter)

Synchronous v.s Asynchronous Message

• An asynchronous message has an

open arrow head

• A synchronous message has a filled

arrow head

• A reply message (return value) has a

dashed line with either an open or

filled arrow head

http://www.omg.org/spec/UML/2.3/

Synchronous v.s Asynchronous Message

• Use asynchronous messages when:

– The sender does not wait for the receiver to

finish processing the message, it continues

immediately.

– Messages sent to a receiver in another process

or calls that start a new thread are examples

of asynchronous messages.

– message from a human actor to the user

interface of the system (in MVC)

• Use synchronous messages for method calls

• A synchronous message is used when the

sender waits until the receiver has finished

processing the message, only then does the

caller continue

Example Sequence Diagram

public class A {

private B myB = new B();

public void doOne()

{

myB.doTwo();

myB.doThree();

}

// ...

}

public class B {

public void doTwo()

{

}

public void doThree()

{

}

// ...

}

Example Sequence Diagram

More Sequence Diagram Notation

1. Messages to “self” or “this”

2. Creation of Instances

3. Diagram Frames

4. Conditional Message

5. Looping

Messages to “self” or “this” (Self-

Delegation)

• An object can send a message to itself.

This is known as self-delegation.

Sometimes, an object creates another

object. This is shown by the message

being sent directly to an object instead

of its lifeline.

(see the activity diagram on the next page)

Activity Diagram

of Make Lunch

Creation of Instances

Diagram Frames

• To support conditional and looping construct

Diagram Frames

• Frame Operator

Diagram Frames

• At times a message is sent only if a condition is met. In those cases, the

condition is placed between a set of brackets, []—for example, [aPatient Exists]

LookupBills().

• The condition is placed in front of the message name.

• However, when using a sequence diagram to model a specific scenario,

conditions are typically not shown on any single sequence diagram.

• Instead, conditions are implied only through the existence of different

sequence diagrams.

Conditional Message

To describe the “if” syntax

Conditional Message

To describe a Mutually Exclusive condition

Looping

To describe the “Loop” syntax

Looping

Iteration over a collection (1) – relatively explicit notation

Looping

Iteration over a collection (2) – leaving things more implicit

Nested Frame

Guidelines in Creating Sequence Diagrams

1. Try to have the messages not only in a top-to-bottom order

but also, when possible, in a left-to-right order.

➢ Given that Western cultures tend to read left to right and top to

bottom, a sequence diagram is much easier to interpret if the messages

are ordered as much as possible in the same way.

➢ To accomplish this, order the actors and objects along the top of the

diagram in the order that they participate in the scenario of the use

case.

Guidelines in Creating Sequence Diagrams

2. If an actor and an object conceptually represent the same idea,
one inside of the software and the other outside, label them
with the same name.

➢ In fact, this implies that they exist in both the use-case diagram (as an
actor) and in the class diagram (as a class).

➢ At first glance, this might seem to lead to confusion.

➢ However, if they do indeed represent the same idea, then they should
have the same name.

➢ For example, a customer actor interacts with the system and the
system stores information about the customer. In this case, they do
indeed represent the same conceptual idea.

Guidelines in Creating Sequence Diagrams

3. The initiator of the scenario—actor or object—should

be the drawn as the farthest left item in the diagram.

➢ This guideline is essentially a specialization of the first

guideline.

➢ In this case, it relates specifically to the actor or object that

triggers the scenario.

Guidelines in Creating Sequence Diagrams

4. When there are multiple objects of the same type, be sure to

include a name for the object in addition to the class of the

object.

For example, in the making a lunch example, there are two

objects of type Parent. As such, they should be named.

Otherwise, you can simply use the class name. This will simplify

the diagram. In this case, the Child object did not have to be

named. We could have simply placed a colon in front of the

class name instead.

Guidelines in Creating Sequence Diagrams

5. Show return values only when they are not obvious. Showing all of

the returns tends to make a sequence diagram more complex and

potentially difficult to comprehend. In many cases, less is more.

Only show the returns that actually add information for the reader

of the diagram.

6. Justify message names and return values near the arrowhead of

the message and return arrows, respectively. This makes it much

easier to interpret the messages and their return values.

Steps to Build Sequence Diagrams

1. Set the context

2. Identify which actors and objects will participate

3. Set the lifeline for each object

4. Lay out the messages from top to bottom of the diagram based on

the order in which they are sent

5. Add execution occurrence to each object‘s lifeline

6. Validate the sequence diagram

1 . 4
C O M M U N I C A T I O N

D I A G R A M

Communication Diagrams

• A communication diagram in the Unified Modeling Language (UML)

2.0, is a simplified version of the UML 1.x collaboration diagram

• Like sequence diagram, it shows the messages that pass between

objects for a particular use-case

• It is an object diagram that shows message-passing relationships

instead of aggregation or generalization associations

Communication Diagrams

• Communication diagrams, like sequence diagrams, essentially provide a view of the

dynamic aspects of an object-oriented system.

– show how the members of a set of objects collaborate to implement a use case or a

use-case scenario.

– model all the interactions among a set of collaborating objects, in other words, a

collaboration (see CRC cards in Chapter 5). In this case, a communication diagram can

portray how dependent the different objects are on one another.

• Communication diagrams are very useful to show process patterns (i.e., patterns

of activity that occur over a set of collaborating classes).

• Communication diagrams are equivalent to sequence diagrams, but they

emphasize the flow of messages through a set of objects, whereas the sequence

diagrams focus on the time ordering of the messages being passed.

Communication Diagrams

• Communication diagrams, like sequence diagrams, essentially provide a view of the

dynamic aspects of an object-oriented system.

– show how the members of a set of objects collaborate to implement a use case or a

use-case scenario.

– model all the interactions among a set of collaborating objects, in other words, a

collaboration (see CRC cards in Chapter 5). In this case, a communication diagram can

portray how dependent the different objects are on one another.

• Communication diagrams are very useful to show process patterns (i.e., patterns

of activity that occur over a set of collaborating classes).

• Communication diagrams are equivalent to sequence diagrams, but they

emphasize the flow of messages through a set of objects, whereas the sequence

diagrams focus on the time ordering of the messages being passed.

The Differences

Sequence Diagram

– Emphasize the time ordering of the messages being passed among

objects

– Can optionally show returns from message

– Association between objects are not shown

Communication Diagram

– Emphasize the flow of messages through a set of objects

– Never shows returns from message

– Association between objects are shown

54

T
h

e
 S

yn
ta

x

Sample Sequence Diagram

Sample Communication Diagram

Sample Sequence Diagram

Actor and Object

Actors and objects that collaborate to execute the use case are placed

on the communication diagram in a manner to emphasize the

message passing that takes place between them.

• Notice that the actors and objects in example before, are the same

ones: aPatient, aReceptionist, aPatient, UnpaidBill, and Appointment.

• Again, as with the sequence diagram, for each of the objects, the

name of the class of which they are an instance is given after the

object’s name (e.g., aPatient: Patient).

Actor and Object

Unlike the sequence diagram, the communication diagram does not

have a means to explicitly show an object being deleted or

created.

• It is assumed that when a delete, destroy, or remove message is sent to an object,

it will go out of existence, and a create or new message will cause a new object to

come into existence.

• Another difference between the two interaction diagrams is that the

communication diagram never shows returns from message sends, whereas the

sequence diagram can optionally show them.

Association

➢ An association is shown between actors and objects with an undirected

line. For example, an association is shown between the aPatient and

aReceptionist actors.

➢Messages are shown as labels on the associations. Included with the labels

are lines with arrows showing the direction of the message being sent.

• For example, the aPatient actor sends the RequestAppt() message to the

aReceptionist actor, and the aReceptionist actor sends the

NewCancelChangeAppt?() and the ApptTimes?() messages to the aPatient actor.

The sequence of the message sends is designated with a sequence number.

According to the example before, the RequestAppt() message is the first

message sent, whereas the NewCancelChangeAppt?() and the ApptTimes?()

messages are the fourth and fifth message sent, respectively.

Conditional Messages

➢ Like the sequence diagram, the communication diagram can represent

conditional messages.

➢ For previous example, the LookupBills() message is sent only if the

[aPatient exists] condition is met. If a message is repeatedly sent, an

asterisk is placed after the sequence number. Finally, an association that

loops onto an object shows self-delegation.

➢ The message is shown as the label of the association

Guidelines for Creating Communication

Diagrams

➢ Use the correct diagram for the information you are interested in communicating

with the user. Communication diagrams allow the team to easily identify a set of

objects that are intertwined. Do not use communication diagrams to model

process flow. Instead, you should use an activity diagram with swimlanes that

represent objects (see Chapter 4). On the other hand, it would be very difficult to

“see” how the objects collaborated in an activity diagram.

➢ When trying to understand the sequencing of messages, a sequence diagram

should be used instead of a communication diagram. As in the previous guideline,

this guideline essentially suggests that you should use the diagram that was

designed to deal with the issue at hand. Even though communication diagrams

can show sequencing of messages, this was never meant to be their primary

purpose.

Simplifying Communication Diagram

➢When a communication diagram is fully populated with all the

objects, it can become very complex and difficult to understand.

When this occurs, it is necessary to simplify the diagram. One

approach to simplifying a communication diagram, like use-case

diagrams(see Chapter 4) and class diagrams (see Chapter 5), is

through the use of packages(i.e., logical groups of classes).

➢ In the case of communication diagrams, its objects are grouped

together based on the messages sent to and received from the other

objects.

Steps to Build Communication Diagrams

1. Set the context

2. Identify objects (actors)

3. Layout the associations between the objects

4. Add messages

5. Validate the communication diagram

Example

public class A {

private B myB = new B();

public void doOne()

{

myB.doTwo();

myB.doThree();

}

// ...

}

public class B {

public void doTwo()

{

}

public void doThree()

{

}

// ...

}

Example Communication Diagram:

makePayment

Link

A connection path between two objects (an instance of an

association)

Message

Represented with a message expression on an arrowed line between

objects

Message

Message to “self” or “this”

Message

Instance

Creation

Sequence Number

Represents

the order in

which the

flows are used

Guard

(Conditional Message)

– Seq. Number [variable = value] : message()

– Message is sent only if clause evaluates to true

Guard

To describe Mutually Exclusive condition

Either 1a or 1b but not both should be executed after msg1

Loop

(Iteration)

– Seq. Number * [i := 1..N]: message()

– “*” is required; [...] clause Is optional

Loop

Iteration over a collection

Example

1 . 5
B E H A V I O R A L

S T A T E M A C H I N E
D I A G R A M

Behavioral State Machine

➢ Some of the classes in the class diagrams represent a set of objects that

are quite dynamic in that they pass through a variety of states over the

course of their existence.

➢ For example, a patient can change over time from being new to current to

former based on his or her status with the doctor’s office.

➢ A behavioral state machine is a dynamic model that shows the different

states through which a single object passes during its life in response to

events, along with its responses and actions.

➢ Typically, behavioral state machines are not used for all objects; rather,

behavioral state machines are used with complex objects to further define

them and to help simplify the design of algorithms for their methods.

Behavioral State Machine

➢ The behavioral state machine shows the different states of the object and

what events cause the object to change from one state to another.

➢ Behavioral state machines should be used to help understand the dynamic

aspects of a single class and how its instances evolve over time unlike

interaction diagrams that show how a particular use case or use-case

scenario is executed over a set of classes.

The Components of Behavioral State

Machine

1. The state of an object is defined by the value of its attributes and

its relationships with other objects at a particular point in time.

• For example, a patient might have a state of new, current, or former. The

attributes or properties of an object affect the state that it is in; however, not

all attributes or attribute changes will make a difference.

• For example, think about a patient’s address. Those attributes make very

little difference to changes in a patient’s state. However, if states were based

on a patient’s geographic location (e.g., in-town patients were treated

differently than out-of-town patients), changes to the patient’s address

would influence state changes.

The Components of Behavioral State

Machine

2. An event is something that takes place at a certain point in

time and changes a value or values that describe an object,

which, in turn, changes the object’s state.

• It can be a designated condition becoming true, the receipt of

the call for a method by an object, or the passage of a

designated period of time. The state of the object determines

exactly what the response will be.

The Components of Behavioral State

Machine

3. A transition is a relationship that represents the movement of

an object from one state to another state. Some transitions

have a guard condition.

• A guard condition is a Boolean expression that includes

attribute values, which allows a transition to occur only if the

condition is true. An object typically moves from one state to

another based on the outcome of an action triggered by an

event.

The Components of Behavioral State

Machine

4. An action is an atomic, non decomposable process that

cannot be interrupted. From a practical perspective, actions

take zero time, and they are associated with a transition.

5. In contrast, an activity is a non atomic, decomposable

process that can be interrupted. Activities take a long period

of time to complete, and they can be started and stopped by

an action.

B
e

h
a

vi
o

ra
l S

ta
te

M
a

c
h

in
e

 D
ia

g
ra

m
 S

y
n

ta
x

Example of Behavioral State Machine

4. An action is an atomic, non decomposable process that

cannot be interrupted. From a practical perspective, actions

take zero time, and they are associated with a transition.

5. In contrast, an activity is a non atomic, decomposable

process that can be interrupted. Activities take a long period

of time to complete, and they can be started and stopped by

an action.

Example of Behavioral State Machine

Example of Behavioral State Machine

States vs Subclasses

• Sometimes, states and subclasses can be confused.

• For example, in Figure 6-19, are the classes Freshman, Sophomore, Junior,

and Senior subclasses of the class Undergraduate or are they states that an

instance of the Undergraduate class goes through during its lifetime?

• In this case, the latter is the better answer.

• When trying to identify all potential classes during structural

modeling (see Chapter 5), you might actually identify states of the

relevant superclass instead of subclasses. This is another example of

how tightly intertwined the functional, structural, and behavioral

models can be.

States vs Subclasses

• From a modeling perspective, although we eventually removed the

Freshman, Sophomore, Junior, and Senior subclasses from the

structural model, capturing that information during structural

modeling and removing it based on discoveries made during

behavioral modeling were preferable to omitting it and taking a

chance of missing a crucial piece of information about the problem

domain.

• Remember, object-oriented development is iterative and

incremental. As we progress to a correct model of the problem

domain, we will make many mistakes.

S
ta

te
s

 v
s

S
u

b
c

la
s

s
e

s

Figure 6-19,

Guidelines for Creating Behavioral State

Machines

1. Create a behavioral state machine for objects whose behavior

changes based on the state of the object. In other words, do not

create a behavioral state machine for an object whose behavior is

always the same regardless of its state. These objects are too

simple.

2. To adhere to the left-to-right and top-to-bottom reading

conventions of Western cultures, the initial state should be drawn

in the top left corner of the diagram and the final state should be

drawn in the bottom right of the diagram.

Guidelines for Creating Behavioral State

Machines

3. Make sure that the names of the states are simple, intuitively

obvious, and descriptive. For example in Figure 6-16, the state

names of the patient object are Entering, Admitted, Under

Observation, and Released.

4. Question black hole and miracle states. These types of states are

problematic for the same reason black hole and miracle activities

are a problem for activity diagrams (see Chapter 4). Black hole

states, states that an object goes into and never comes out of, most

likely are actually final states. Miracle states, states that an object

comes out of but never went into, most likely are initial states

Guidelines for Creating Behavioral State

Machines

5. Be sure that all guard conditions are mutually exclusive (not overlapping). For

example, in Figure 6-16, the guard condition [Diagnosis =Healthy] and the guard

condition [Diagnosis = Unhealthy] do not overlap. However, if you created a

guard condition of [x >=0] and a second guard condition [x <=0], the guard

conditions overlap when x =0, and it is not clear to which state the object would

transition. Th is would obviously cause confusion.

6. All transitions should be associated with a message and operation. Otherwise,

the state of the object could never change. Even though this may be stating the

obvious, there have been numerous times that analysts forget to go back and

ensure that this is indeed true.

Steps for Creating A Behavioral State

Machines

1. Set Context

• Examine your class diagram to identify which classes undergo a

complex series of state changes and draw a diagram for each of them

• The context of a behavioral state machine is usually a class. However,

it also could be a set of classes, a subsystem, or an entire system.

2. Identify object states

3. Layout Diagram

4. Add transition

5. Validation

1 . 6
C R U D E

A N A L Y S I S

CRUDE Analysis

• CRUDE analysis uses a CRUDE matrix, in which each interaction

among objects is labeled with a letter for the type of interaction: C

for create, R for read or reference, U for update, D for delete, and E

for execute.

• In an object-oriented approach, a class/actor-by-class/actor matrix

is used.

• Each cell in the matrix represents the interaction between instances

of the classes.

CRUDE Analysis

• Unlike the interaction diagrams and behavioral state machines, a

CRUDE matrix is most useful as a system-wide representation.

• Once a CRUDE matrix is completed for the entire system, the matrix

can be scanned quickly to ensure that every class can be

instantiated.

• Each type of interaction can be validated for each class.

• For example, if a class represents only temporary objects, then the column in

the matrix should have a D in it somewhere. Otherwise, the instances of the

class will never be deleted. Because a data warehouse contains historical

data, objects that are to be stored in one should not have any U or D entries

in their associated columns.

CRUDE Analysis

• Finally, the more interactions among a set of classes, the more likely they should

be clustered together in a collaboration.

• However, the number and type of interactions are only an estimate at this point

in the development of the system. Care should be taken when using this

technique to cluster classes to identify collaborations. We return to this subject in

the next chapter when we deal with partitions and collaborations.

• CRUDE analysis also can be used to identify complex objects. The more (C)reate,

(U)pdate, or (D)elete entries in the column associated with a class, the more likely

the instances of the class have a complex life cycle.

• As such, these objects are candidates for state modeling with a behavioral state

machine.

CRUDE Analysis

• In this way, CRUDE analysis can be used as a way to partially

validate the interactions among the objects in an object-oriented

system.

• It could be the case, by creating a CRUDE matrix, we discovered an

additional requirements that had previously been overlooked.

Consequently, we need to go back and add additional the

associated use cases, activity diagrams, sequence diagrams,

communication diagrams and review the class diagrams, CRC cards

and behavioral state machines to ensure that they are still correct.

CRUDE Matrix for the Make Old Patient Apt

Use Case

1 . 6
V E R I F Y I N G A N D

V A L I D A T I N G T H E
B E H A V I O R A L

M O D E L

Verifying and Validating The Behavioral Model

• First, every actor and object included on a sequence diagram must be included

as an actor and an object on a communication diagram, and vice versa.

• Second, if there is a message on the sequence diagram, there must be an

association on the communications diagram, and vice versa.

• Third, every message that is included on a sequence diagram must appear as a

message on an association in the corresponding communication diagram, and

vice versa.

• Fourth, if a guard condition appears on a message in the sequence diagram,

there must be an equivalent guard condition on the corresponding

communication diagram, and vice versa.

Verifying and Validating The Behavioral Model

• Fifth, the sequence number included as part of a message label in a

communications diagram implies the sequential order in which the message will

be sent. Therefore, it must correspond to the top-down ordering of the messages

being sent on the sequence diagram.

• Sixth, all transitions contained in a behavior state machine must be associated

with a message being sent on a sequence and communication diagram, and it

must be classified as a (C)reate, (U)pdate, or (D)elete message in a CRUDE matrix.

• Seventh, all entries in a CRUDE matrix imply a message being sent from an actor

or object to another actor or object. If the entry is a (C)reate, (U)pdate, or (D)elete,

then there must be an associated transition in a behavioral state machine that

represents the instances of the receiving class.

In
te

rr
e

la
ti

o
n

s
h

ip
s

 A
m

o
n

g

B
e

h
a

v
io

ra
l

M
o

d
e

ls

Your Turn ☺ - Case in Previous Chapter

The borrowing activities are built around checking books out and returning books by borrowers.

There are three types of borrowers: students, faculty or staff, and guests. Regardless of the type

of borrower, the borrower must have a valid ID card. If the borrower is a student, having the

system check with the registrar’s student database validates the ID card. If the borrower is a

faculty or staff members, having the system check with the personnel office’s employee

database validates the ID card. If the borrower is a guest, the ID card is checked against the

library’s own borrower database. If the ID card is valid, the system must also check to determine

whether the borrower has any overdue books or unpaid fines. If the ID card is invalid, the

borrower has overdue books, or the borrower has unpaid fines, the system must reject the

borrower’s request to check out a book, otherwise the borrower’s request should be honored.

Create an Sequence Diagram and Communication Diagram for Borrow Books (Use Case)

for the Students with a valid ID, no fines, and available book scenario.

References

• Dennis, Alan, et. al., System Analysis and Design with UML 5rd Edition, John Wiley & Sons,

2015.

• Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3rd Edition, Pearson Education International, USA, 2005.

• Unified Modeling Language. Available at: http://www.omg.org/spec/UML/ last accessed April

20th 2015.

• Communication Diagram. Available at: http://en.wikipedia.org/wiki/Communication_diagram

last accessed April 23rd 2015.

http://www.omg.org/spec/UML/
http://en.wikipedia.org/wiki/Communication_diagram

