
T O P I C 1

I N T R O D U C T I O N
T O I N F O R M A T I O N

S Y S T E M S
A N A L Y S I S A N D

D E S I G N

A N A L I S I S D A N P E R A N C A N G A N S I S T E M I N F O R M A S I

C S I M 6 0 3 1 8 3

Learning Objectives
1. Able to elaborate what computer-based information

systems is.

2. Able to explain the system development lifecycle (SDLC)

principles and the deliverables for each phase.

3. Able to explain the evolution of information systems

development methodology.

4. Able to elaborate the role of each member in IS project

team.

5. Able to elaborate the characteristics of OO Systems and

OO Systems Design and Analysis.

6. Able to elaborate the component of UML Diagram

1. Computer-based Information Systems

2. The Principle of Information Systems Development Lifecycle

(SDLC) and the Role of System Analyst

3. IS Development Methodology

4. Building Team in IS Development Project

Session Outline

1 . 1
C O M P U T E R -

B A S E D
I N F O R M A T I O N
S Y S T E M S A N D

T H E R O L E O F
S Y S T E M

A N A L Y S T

What are the characteristics of

Information Systems?

• Information System is a set of interrelated elements or components

that collect (input), manipulate (process), and disseminate (output) data

and information and provide a feedback mechanism to meet an

objective.

– What are the elements? People, Data, Processes and Procedures, Technology,

Tools, etc.

– What objective(s) need to be achieve? Organization objectives

• We focus on Computer-based Information System.

– By definition, Information System is not necessarily needs computer.

– It’s a computer application to perform a certain tasks.

What is Computer Based Information

Systems?

Manual

Stand alone Information System

Integrated Information Systems: ERP

Business Intelligence Systems

Cloud Computing, Big Data, and Mobile Technology

have changed the utilization of IT Services.

Information Systems Evolution

http://www.google.co.id/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjo7sPDq-XOAhUIOI8KHW0pAAEQjRwIBw&url=http://www.careeredlounge.com/pg/blog/cindyb/read/33093/best-practice-in-an-internal-file-review&psig=AFQjCNEcp8r029-uREO78pcVhmixW19YmA&ust=1472515938022763
https://www.google.co.id/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiw3c7hreXOAhXKqI8KHSBnCOsQjRwIBw&url=https://www.passionned.com/business-intelligence/business-intelligence-systems/&psig=AFQjCNGlP0ZMwwdAsJlSn1SznftstFGmzA&ust=1472516485902261

Information Systems Evolution
Era Information System Data Processing

1960 Transaction Processing System Automate repeating activity

1970 Management Information System Recap weekly, monthly, etc.

functional data

1980 Strategic Information System Process External and Internal data

1990 e-Business,

e-Commerce, e-Gov.

Process Multi-stakeholder Online

Data

2000 Enterprise Resource Planning Integrate Functional Data

2006 Business Intelligent Process Temporal and Spatial Data

become Big Data

What are the differences among

Transaction Processing Systems,

Management Information Systems, and

Strategic IS

Basic Type of IS

HRD FINANCE …… Functions

ERP

Business

Intelligence

IS

Basic Type of IS

HRD FINANCE …… Functions

Basic Type of IS

A Set of Tables

A Set of Graphics

75%

Dashboard

1 . 2
T H E S Y S T E M S
D E V E L O P M E N T

L I F E C Y C L E
(S D L C)

(Information) Systems Development

Lifecycle: SDLC

• The process of understanding how an information system (IS)

can support business needs by designing a system, building

it, and delivering it to users.

• Sounds pretty simple…

• Is it? …

What are the importance of SDLC?

The Importance of SDLC

• The Standish Group (1996)
– 42% were abandoned before

completion

• General Accounting Office (1996)
– 53% all US Government IS projects

were abandoned

– Many of the remaining were
delivered very late, over budget,
fewer features than planned.

• IAG Consulting
– 80% were over time

– 72% were over budget

– 55% delivered less than the full
functionality

• Panorama Consulting Solutions
– 54% ERP projects were over time

– 56% were over budget

– 48% delivered less than 50% of full
functionality

• IBM
– 59% projects missed one or more of

on time, within budget and quality
constraints.

Key Person in SDLC

System Analyst

Create wonderful system?

Key Issues

• Many failed systems were abandoned because analysts tried to build

wonderful systems without understanding how the system would

fit with the organization’s goals

• The primarily goal of information system is to create value for the

organization → profit for most organization/company

Key Issues: What should system analyst do?

To Create Value for the Organization!!!

1. Analyze business situation

2. Identify opportunities for improvements

3. Design an IS to implement them

Key Issues

• The systems analyst is a key person analyzing the business,
identifying opportunities for improvement, and designing
information systems to implement these ideas.

• It is important to understand and develop through practice the skills
needed to successfully design and implement new information
systems.

Programmer Users, Clients

Programmer Users, ClientsSystem Analyst

Programmer Users, Clients

Technical Analyst Business Analyst

System Analyst

1970-an

1980-an

2000-an

The Changing Roles of System Analyst

Building Information Systems

• Building IS is similar to build a house

– Starts with basic idea

– Transformed into a simple drawing and shown to customer and refined until
customer agree

– A set of blueprint is designed

– The house is built following the blueprint

• In IS, it is called System Development Life Cycle (SDLC) which has a
similar of 4-fundamental phases (Planning, Analysis, Design and
Implementation)

• Each phases is composed of a series of steps, which rely upon
techniques that produce deliverables (specific documents and files
that provide understanding about the project)

Information Systems Development Lifecycle

• In many project, SDLC phases and steps proceed in a logical
path from start to finish, while in other project, the project
teams move through the steps consecutively, incrementally,
iteratively, or in other pattern.

• SLDC is a gradual refinement (each phase refines and
elaborates on the work done previously)

– Deliverables produced in the analysis phase provide a general idea
of the shape of the new system

– These are used as input to the design phase which then refines
them to produce a set of more detailed deliverables.

– These deliverables, in turn, are used in the implementation phase to
produce the actual system.

Analyze for each phase of SDLC steps and

how they are related each other!

Phases of SDLC

• Planning

– Why build the system?

– How the project team will go to build it?

• Analysis

– Who, what, when, where will the system be?

• Design

– How will the system will operate, in terms of the hardware, software and

infrastructure?

• Implementation

– The system is actually built or purchased

– System delivery

#1 Planning

• Project Initiation

– Identify business value (how will the IS lower costs or increase

revenue ?)

• A system request presents a brief summary of business need, and explain how the system will

create business value

– Analyze feasibility (technical, economic and organizational)

• Project Management

– Develop work plan

– Staff the project

– Control and direct project

#2 Analysis

• Analysis Strategy

– Analyze current system (as-is system) and new system (to-be

system)

• Requirement gathering

– Interview or questionnaires or other method

– Analysis Model (Process and Data)

• System Proposal

– Describe what business requirements of the new system should

met.

#3 Design

• Design Strategy

– Build it, outsource or buy ?

• Architectural & Interface Design

– Describe h/w, s/w, network infrastructure

– How the users will move through the system

• Database and file specification

• Program design

#4 Implementation

• System Construction

– The system is built and tested to make sure it performs as designed.

• Installation

– Prepare to support the installed system.

• Support Plan

– Includes a post-implementation review.

Process Product

Planning

Analysis

Design

Implementation

Project Plan

System Proposal

System

Specification

New System and

Maintenance Plan

Processes and Deliverables

33

T
im

e

Phases/Stages

Plan Analysis Design Implementation

ANAPERANCIS

SDLC Effort Allocation

Basic Information Systems Development

Project Life Cycle

Project Initiation Project Charter (System Request)

Project Management Plan Project Proposal

Project Execution: Requirement
Analysis System Proposal (Logical IS)

Information Systems Design System Specification (Physical IS)

PHASES DELIVERABLES

AcceptR
e
je

c
t

Accept

R
e
je

c
t

System Implementation Working Information Systems

R
e
je

c
t

R
e
je

c
t

Accept

Accept

1 . 3
I S

D E V E L O P M E N T
M E T H O D O L O G Y

What is methodology?

• A formalized approach or series of steps

• A methodology is a formalized approach to implementing
the SDLC.

– The methodology will vary depending on whether the
emphasis is on businesses processes or on the data that
supports the business.

Writing code without a well-thought-out system request may
work for small programs, but rarely works for large ones.

SDLC methodology categorization

• Methodology that focuses on business process or data that support
the business

– Process-centered methodology

– Data methodology

– Object-oriented methodology

• Methodology that focuses on the sequencing of SDLC phases and the
amount of time and effort.

– Structured Development

– Rapid Application Development

– Agile Development

Process-Centered Methodology

• With this methodology, the focus is on defining the

activities associated with the system.

• The concentration is on representing the system concept as

a set of processes with information flowing into and out

of the processes.

Data-Centered Methodology

• This methodology focuses on defining the content of the

data storage containers and how they are organized.

• Data-centered methodologies utilize data models as the

core of the system concept.

Object Oriented Methodology

• Attempts to balance emphasis on data and process

• Uses Unified Modeling Language (UML) for diagramming

Compare and contrast Structured

Development,

Rapid Application Development, and

Agile Development methodology

Type of Systems Development Methodology

• Structured Design

– Waterfall

– Parallel

• Rapid Application Development (RAD)

– Phased Development

– Prototyping

– Throw-Away Prototyping

• Agile Development

– Extreme Programming

– Scrum

Structured Design

• Projects move methodically from one to the next step

• Generally, a step is finished before the next one begins

• This design methodology introduces the use of formal
modeling or diagramming techniques to describe a
system’s basic business processes and follows a basic
approach of two structured design categories.

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

Structured Design: Waterfall

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

With waterfall development- based methodologies, the analysts

and users proceed sequentially from one phase to the next.

Structured Design: Waterfall

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

• Advantages:

– The system requirements are identified long before

programming begins.

– Changes to the requirements are minimized as the project

proceeds.

• Disadvantages:

– The length of key deliverables

– Highest time gap between analysis and the delivery of the

system

– High post implementation effort for a missed requirement

– Significant rework as the consequences of business

environment changes

Structured Design: Parallel

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

• This methodology attempts to address the long time interval

between the analysis phase and the delivery of the system

• A general design for the entire system is performed and then

the project is divided into a series of distinct subprojects.

• Advantage:

– Reduce time delivery

– Less changes in the business environment causing rework

• Disadvantage:

– Interdependency of subprojects → significant integration

efforts

Structured Design: Parallel

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

Rapid Application Development (RAD)

• RAD-based methodologies adjust the SDLC phases to
get some part of system developed quickly and into
the hands of the users.

• Most RAD-based methodologies recommend that
analysts use special techniques and computer tools to
speed up the analysis, design, and implementation
phases, such as CASE (computer-aided software
engineering) tools.

– CASE tools

– JAD sessions

– Fourth generation/visualization programming
languages

– Code generators

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

Rapid Application Development (RAD)

• One possible subtle problem with RAD-based
methodologies is managing user expectations.

• RAD Categories:

–Phased development
• A series of versions

–Prototyping
• System prototyping

–Throw-away prototyping
• Design prototyping

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Phased Development

• This methodology breaks the overall system into a

series of versions that are developed sequentially.

• The team categorizes the requirements into a series of

versions, then the most important and fundamental

requirements are bundled into the first version of the

system.

• The analysis phase then leads into design and

implementation; however, only with the set of

requirements identified for version 1.

• As each version is completed, the team begins work on

a new version.

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Phased Development

• Advantage:

– The users quickly use the system, although it does not

perform all the functions the users need

• Disadvantage:

– The users begin to work with systems that intentionally

incomplete → critical to define the priority of user

requirements

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Phased Development

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Prototyping

• Prototyping-based methodologies perform the

analysis, design and implementation phases

concurrently.

• All three phases are performed repeatedly in a cycle

until the system is completed.

• A prototype is a smaller version of the system with a

minimal amount of features.

• Quick and dirty program → provides minimal amount

of features

• Fits for users with unknown requirements

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Prototyping

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Prototyping

• Advantage

– Quickly provide a system for the users to interact

with, even if it is not initially ready for use.

– Help to more quickly refine real requirements

• Disadvantage

– Often the prototype undergoes such significant

changes that many initial design decisions prove to

be poor ones.

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Throw-Away Prototyping

• Throw-away prototyping methodologies are similar to

prototyping based methodologies.

• The main difference is that throwaway prototyping IS

completed during a different point in the SDLC.

• Has relatively thorough analysis phase.

• Design prototype is not working systems

• Fit for users who are not completely clear on how the

systems work

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Throw-Away Prototyping

• Advantages

– Each prototype is used to minimize the risk

associated with the system

– Important issues are understood before the real

system is built

– Produce more stable and reliable systems

• Disadvantages:

– Take longer delivery time compare to prototyping-based

methodologies

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

RAD: Throw-Away Prototyping

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile Development
 Extreme

Programming

 Scrum

Agile Development

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile
Development
 Extreme

Programming

 Scrum

• This category focuses on streamlining the SDLC

by eliminating much of the modeling and

documentation overhead and the time spent on

those tasks.

• Projects emphasize simple, iterative application

development.

• This category uses extreme programming, which

is described next.

Agile Development

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile
Development
 Extreme

Programming

 Scrum
Typical agile development methodology

Agile Development: Extreme Programming

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile
Development
 Extreme

Programming

 Scrum

• Extreme Programming (XP) was founded on four core
values:

– Communication

– Simplicity

– Feedback

– Courage

• All programming is done in pairs, a shared responsibility
for each soft ware component develops among the
programmers.

• Key principles of XP include:

– Continuous testing

– Simple coding

– Close interaction with the end users to build systems very quickly

Agile Development: Scrum

 Structured Design
 Waterfall

 Parallel

 Rapid Application
Development
(RAD)
 Phased

Development

 Prototyping

 Throw-Away
Prototyping

 Agile
Development
 Extreme

Programming

 Scrum

• Scrum is the most chaotic of all systems development
approaches

• Teams are self-organized and self-directed.

• Unlike other approaches, Scrum teams do not have a

designated team leader. Instead, teams organize

themselves in a symbiotic manner and set their own

goals for each sprint (iteration).

• The team members attend the scrum meetings, but

anyone can attend.

Selecting Methodology

• Selecting a methodology is not simple, as no one

methodology is always best.

• Many organizations have their own standards.

What is the best methodology in SDLC?

What are the criterias for choosing the

appropriate methodology?

Selecting Methodology

1. Clarity of User Requirements

2. Familiarity with Technology

3. System Complexity

4. System Reliability

5. Short Time Schedules

6. Schedule Visibility

Selecting Methodology

Criterion 1: Clarity of User Requirements

RAD methodologies of prototyping and throwaway

prototyping are usually more appropriate when user

requirements are unclear as they provide prototypes for users

to interact with early in the SDLC.

Criterion 2: Familiarity with Technology

If the system is designed without some familiarity with the

base technology, risks increase because the tools may not be

capable of doing what is needed.

Criterion 3: System Complexity

• Complex systems require careful and detailed analysis and

design.

• Project teams who follow phased development-based

methodologies tend to devote less attention to the analysis

of the complete problem domain than they might if they

were using other methodologies.

Criterion 4: System Reliability

• System reliability is usually an important factor in system

development.

• Throwaway prototyping-based methodologies are most

appropriate when system reliability is a high priority.

• Prototyping-based methodologies are generally not a good

choice as they lack careful analysis and design phases.

Criterion 5: Short Time Schedules

• RAD-based methodologies are well suited for projects with

short time schedules as they increase speed.

• Waterfall-based methodologies are the worst choice when

time is essential as they do not allow for easy schedule

changes.

Criterion 6: Schedule Visibility

RAD-based methodologies move many of the critical design

decisions earlier in the project; consequently, this helps project

managers recognize and address risk factors and keep

expectations high.

1 . 4
B U I L D I N G

T E A M I N I S
D E V E L O P M E N T

P R O J E C T

Project Team Skills and Roles

• Projects should consist of a variety of skilled individuals in
order for a system to be successful.

• Six major skill sets an analyst should have include:
– Technical

– Business

– Analytical

– Interpersonal

–Management

– Ethical

Categories of Analysts

• Business analyst

• System analyst

• Infrastructure analyst

• Change management analyst

• Project manager

Project Team Roles

1 . 5
B A S I C

C H A R A C T E R I S T
I C S O F O - O

S Y S T E M S

Characteristics of OO Systems

Object-oriented systems focus on capturing the structure and
behavior of information systems in little modules that encompass
both data and process.

Familiar Terms

1. Classes and Objects

2. Methods and Messages

3. Encapsulation and Information Hiding

4. Inheritance

5. Polymorphism and Dynamic Binding

Characteristics of OO Systems

1. Classes and Objects

– A class is the general template we use to define and create specific instances, or objects.

– An object is an instantiation of a class.

– Each object has attributes that describe information about the object

– Each object also has behaviors, that specify what the object can do.

2. Methods and Messages

– Methods implement an object’s behavior.

– A method is nothing more than an action that an object can perform.

– Messages are information sent to objects to trigger methods.

– A message is essentially a function or procedure call from one object to another

object.

Characteristics of OO Systems

3. Encapsulation and Information Hiding

– Encapsulation is simply the combination of process and data into a
single entity.

– The principle of information hiding suggests that only the
information required to use a software module be published to the
user of the module.

–We really do not care how the object performs its functions, as
long as the functions occur.

– In object-oriented systems, combining encapsulation with the
information-hiding principle supports treating objects as black
boxes.

Characteristics of OO Systems

4. Inheritance

– using inheritance to identify higher-level, or more general, classes
of objects.

5. Polymorphism and Dynamic Binding

– Polymorphism means that the same message can be interpreted
differently by different classes of objects.

– Polymorphism is made possible through dynamic binding.
Dynamic, or late, binding is a technique that delays typing the
object until run-time. The specific method that is actually called is
not chosen by the object-oriented system until the system is
running.

Characteristics of OO Systems Analysis and

Design

The primary difference between a traditional approach like structured

design and an object-oriented approach is how a problem is

decomposed.

– In traditional approaches, the problem-decomposition process is either

process-centric or data-centric.

– However, processes and data are so closely related that it is difficult to

pick one or the other as the primary focus.

– Based on this lack of congruence with the real world, new object-

oriented methodologies have emerged that use the RAD-based

sequence of SDLC phases but attempt to balance the emphasis between

process and data by focusing the decomposition of problems on objects

that contain both data and processes.

Characteristics of OO Systems Analysis and

Design

1. Use-Case Driven

– Use cases are the primary modeling tools defining the behavior of the

system.

– A use case describes how the user interacts with the system to perform

some activity, such as placing an order, making a reservation, or

searching for information.

– The use cases are used to identify and to communicate the

requirements for the system to the programmers who must write the

system.

– Use cases are inherently simple because they focus on only one

business process at a time.

Characteristics of OO Systems Analysis and

Design

1. Use-Case Driven

– In contrast, the process model diagrams used by traditional structured

and RAD methodologies are far more complex because they require

the systems analyst and user to develop models of the entire system.

– With traditional methodologies, each system is decomposed into a set

of subsystems, which are, in turn, decomposed into further subsystems,

and so on.

– This goes on until no further process decomposition makes sense, and

it often requires dozens of pages of interlocking diagrams. In contrast, a

use case focuses on only one business process at a time, so developing

models is much simpler.

Characteristics of OO Systems Analysis and

Design

2. Architecture-Centric

–Any modern approach to systems analysis and design should

be architecture-centric.

–Architecture-centric means that the underlying software

architecture of the evolving system specification drives the

specification, construction, and documentation of the system.

Characteristics of OO Systems Analysis and

Design

2. Architecture-Centric

– Modern object-oriented systems analysis and design approaches should

support at least three separate but interrelated architectural views of a

system: functional, static, and dynamic.

a) The functional, or external, view describes the behavior of the

system from the perspective of the user.

b) The structural, or static, view describes the system in terms of

attributes, methods, classes, and relationships.

c) The behavioral, or dynamic, view describes the behavior of the

system in terms of messages passed among objects and state

changes within an object.

Characteristics of OO Systems Analysis and

Design

3. Iterative and Incremental

❑ Modern object-oriented systems analysis and design approaches

emphasize iterative and incremental development that undergoes

continuous testing and refinement throughout the life of the project.

❑ This implies that the systems analysts develop their understanding of a

user’s problem by building up the three architectural views little by little.

❑ The systems analyst does this by working with the user to create a

functional representation of the system under study.

❑ Next, the analyst attempts to build a structural representation of the

evolving system.

Characteristics of OO Systems Analysis and

Design

3. Iterative and Incremental

❑ Using the structural representation of the system, the analyst distributes

the functionality of the system over the evolving structure to create a

behavioral representation of the evolving system.

❑ As an analyst works with the user in developing the three architectural

views of the evolving system, the analyst iterates over each of and among

the views.

❑ That is, as the analyst better understands the structural and behavioral

views, the analyst uncovers missing requirements or misrepresentations in

the functional view. This, in turn, can cause changes to be cascaded back

through the structural and behavioral views.

1 . 6
U M L

Characteristics of OO Systems Analysis and

Design

• Until 1995, object concepts were popular but implemented in many

different ways by different developers. Each developer had his or her

own methodology and notation (e.g., Booch, Coad, Moses, OMT,

OOSE, SOMA).23 Then in 1995, Rational Software brought three

industry leaders together to create a single approach to object-

oriented systems development.

• The objective of UML was to provide a common vocabulary of

object-oriented terms and diagramming techniques rich enough to

model any systems development project from analysis through

implementation.

UML Diagram

1. Structure diagrams

– provide a way to represent the data and static relationships in an information system.

– the structure diagrams include class, object, package, deployment, component,

composite structure, and profile diagrams.

2. Behavior diagrams

– provide the analyst with a way to depict the dynamic relationships among the instances

or objects that represent the business information system.

– they also allow modeling of the dynamic behavior of individual objects throughout their

lifetime.

– the behavior diagrams support the analyst in modeling the functional requirements of an

evolving information system.

– the behavior modeling diagrams include activity, sequence, communication, interaction

overview, timing, behavior state machine, protocol state machine, and use-case diagrams.

UML Diagram

S U M M A R Y

Summary

• Basic type of computer-based information systems consist of
Transaction Processing System, Management Information System,
and Strategic Information System, which process data and
information for different type of users.

• The development of information systems have to consider the
technological development, such as cloud computing, big data, and
also mobile technology.

• The primarily goal of information system is to create value for the
organization.

• SDLC helps team member to understand how an information system
(IS) can support and enable business needs by designing a system,
building it, and delivering it to users.

Summary

• SDLC consists of 4-fundamental phases (Planning, Analysis, Design and

Implementation), which each phase refines and elaborates on the work done

previously).

• The systems analyst is a key person analyzing the business, identifying

opportunities for improvement, and designing information systems to

implement these ideas.

• SDLC methodology that focuses on business process or data that support

the business consists of process-centered methodology, data

methodology, and object-oriented methodology

• SDLC methodology that focuses on the sequencing of SDLC phases and the

amount of time and effort consists of Structured Development, Rapid

Application Development, and Agile Development

Summary

• Criterias for selecting SDLC methodology: clarity of user

requirements, familiarity with technology, system complexity,

system reliability, short time schedules, schedule visibility

References

1. Systems Analysis and Design: An Object Oriented Approach with
UML 5th ed. Alan Dennis, Barbara Haley Wixom, and Roberta M. Roth
© 2015 – Chapter 1

2. http://emojipedia.org/whatsapp/

3. For complete description of UML see:

4. www.rational.com/uml

http://emojipedia.org/whatsapp/

