Introduction of Metabolic Pathway Analysis

> Usman Sumo Friend Tambunan Arli Aditya Parikesit

Bioinformatics Group Department of Mathematics Faculty of Mathematics and Science University of Indonesia

Kyoto Encyclopedia of Genes and Genomes

Susan Seo Intro to Bioinformatics Fall 2004

KEGG Purpose & Overview

Features

Example

Purpose

- Developed at the Kanehisa Laboratory
- Integrates:
 - current knowledge of molecular interaction networks
 - information about genes and proteins
 - information about chemical compounds and reactions

PATHWAY database

GENES / SSDB / KO databases

COMPOUND / GLYCAN / REACTION databases

Parkinson's Disease

Search the Pathway database

- Explore a pathway linked with Parkinson's disease in humans
- Look more closely at the PARK2 gene

Features •OC Viewer Gene catalog •SSDB •LinkDB Position Amino Acid sequence Nucleotide Sequence

EC system 0/2

An Old, but still universally accepted system by biochemists

EC system was developed long before protein sequence or structure information were available, so the system focuses on reaction, not sequence homology and structure

Many biochemists and structural biologists try to harmonize newly available chemical, sequential, and structural data with traditional understanding of enzyme function.

Problems in EC system 1/2

Inconsistency in the EC hierarchy

- For each of the six top-level EC classes, subclasses and sub-subclasses may have different meanings.
- e.g. EC1.* are divided by substrate type, but EC5.* by general isomerase type
- Problem with Multi-functional enzymes and multiple subunits involved in a function
 - EC presumes only a 1:1:1 relationship between gene, protein, and reaction.
- Different sequence/structure, but similar EC
 - Two enzymes with lower sequence identities sometimes belong to the same or very similar EC.
 - e.g. o-succinylbenzoate synthase across several bacteria have below the 40% sequence identity

Problems in EC system 2/2

Similar sequence/structure, but different EC

- Even variation in the fourth digit of the EC number is rare above a sequence identity threshold of 40%.
- ▶ However, exceptions to this rule are prevalent.
- e.g. melamine deaminase and atrazine chlorohydrolase have 98% identical, but belong to different EC.
- No information on sequence/structure-mechanism relationship
 - EC system considers only overall transformation
 - Similarity among sequences is strongly correlated with similarities in the level of a common (structural domain-related) partial reaction, rather than overall transformation
 - How to combine enzyme structure data with partial reaction data?
- Research Goal
 - We provide a computational environment for enzyme analysis via genome comparison
 - And it will be built on PLATCOM system

Our Research Goal

We provide a computational environment for enzyme analysis via multiple genome comparison

And it will be built on PLATCOM system

PLATCOM A Platform for Comparative Genomics

Providing a platform for comparative genomics ON THE WEB

Comparative analysis system for users to freely select any sets of genomes

Scalable system interactively combining high-performance sequence analysis tools

CURRENT IMPLEMENTATION

ComPath

- ComPath = KEGG + PLATCOM
- Not just for retrieving information from Database,
- but focuses on analyzing enzymes using the enzymegenome table
- Easy to use
 - Coptional Upload a user sequence and/or a saved enzyme-genome table data
 - Select a metabolic pathway
 - Select any combination of genomes in KEGG
 - Create an enzyme-genome table
 - Then use the table for various enzyme sequence analysis tasks

Screenshot:

Pathway Selection

ComPath : Comparative Pathway Analysis

Upload your table with color

Submit Reset

Browse...

OR

Select metabolic pathway(s) Submit Reset

Carbohydrate Metabolism

no=No Select	
00010=Glycolysis / Gluconeogenesis	
00020=Citrate cycle (TCA cycle)	

Energy Metabolism

no=No Select	
00190=Oxidative phosphorylation	
00193=ATP synthesis	

Lipid Metabolism

no=No Select	
00061=Fatty acid biosynthesis (path 1)	-
00062=Fatty acid biosynthesis (path 2)	

Nucleotide Metabolism

no=No Select	
00230=Purine metabolism	

11 categories 123 pathways Users can upload the previous Enzyme-Genome table datatype to continue analysis

Screenshot: Genome Selection

ComPath : Comparative Pathway Analysis

- Pathway 00010=Glycolysis / Gluconeogenesis was selected. - Select genomes from taxonomy tree or alphabetical genome list

Genome Tree by Taxonomical Order

Archaea	Submit Re	eset	
Crenarcl	haeota		
Therr	moprotei		
	a.pernix		Aeropyrum pernix
	s.solfataricus		Sulfolobus solfata
	s.tokodaii		Sulfolobus tokoda
	p.aerophilum		Pyrobaculum aero
Eurvarch	naeota		
Arch	aeoglobi		
	a.fulgidus		Archaeoglobus ful
Halo	bacteria		
	halobacterium		Halobacterium sp.
Meth	ianobacteria		
	m.thermoautotro	phicum	Methanobacteriun
Meth	anococci		
	m.jannaschii		Methanococcus ja
	m.maripaludis		Methanococcus n
Meth	anomicrobia		
	m.acetivorans		Methanosarcina a
	m.mazei		Methanosarcina n
Meth	ianopyri		
	m.kandleri		Methanopyrus kar
Therr	mococci		-
	p.abyssi		Pyrococcus abys:
	n horikoshii		Pyrococcus horik

Aeropyrum pernix, complete genome. Sulfolobus solfataricus, complete genome. Sulfolobus tokodaii, complete genome. Pγrobaculum aerophilum, complete genome.

Archaeoglobus fulgidus DSM 4304, complete genome.

Halobacterium sp. NRC-1 plasmid pNRC100, complete sequence.

Methanobacterium thermoautotrophicum str. Delta H complete genome.

Methanococcus jannaschii complete genome. Methanococcus maripaludis, complete genome.

Methanosarcina acetivorans str. C2A, complete genome. Methanosarcina mazei strain Goe1, complete genome.

Methanopyrus kandleri AV19, complete genome.

Pyrococcus abyssi, complete genome. Pyrococcus horikoshii, complete genome.

- 250 genomes from KEGG database
- Users can select genomes by taxonomical and alphabetical order

Enzyme-Genome Table

An enzyme-genome table allows for tests on whether a certain enzyme in a given pathway is present or missing using sequence analysis techniques.

Information in this table can be easily saved, uploaded, transferred.

Users also can upload their sequence set, e.g., an entire set of predicted proteins in a newly sequenced genome, and perform annotation of the sequences in terms of KEGG pathways.

Screenshot: KEGG's Ortholog Table – STATIC!

	E2.7.1.11 E4.		4.1.2.13	E5.3.1.1	E1.2.1.12 Glyceraldehyde-3P	E2.7.2.3 Phosphoglycerate kinase	E5.4.2.1 Phosphoglycerate mutase
Organism	Phospho-	Aldolase		Triose-phosphate			
	fructokinase	dass II		Isomerase	dehydrogenase		
hsa [P G T]	5211(PFKL) 5213(PFKM) 5214(PFKP)		226(ALDOA) 229(ALDOB) 230(ALDOC)	7167(TPI1)	2597(GAPD) 26330(GAPDS)	5230(PGK1) 5232(PGK2)	441531 (LOC441531) 5223(PGAM1) 5224(PGAM2) 669(BPGM)
mmu [P G T]	18641(Pfkl) 18642(Pfkm) 56421(Pfkp)		11674(Aldoa) 11676(Aldoc) 230163(Aldob)	2 <mark>1991(Tpi1)</mark>	14433(LOC14433) 14447(Gapds) 407972(Gapd)	18655(Pgk1) 18663(Pgk2) 432633 (LOC432633)	12183(Bpgm) 18648(Pgam1) 56012(Pgam2)
rno [P G T]	25741(Pfkl) 65152(Pfkm)		24189(Aldoa) 24190(Aldob) 24191(Aldoc)	246267 (LOC246267) 24849(Tpi1)	24383(Gapd) 66020(Gapds)	24644(Pgk1)	24642(Pgam1) 24959(Pgam2)
gga[P G T]							
dre [P G T]]		321664 369193	192309 192310	406367		
dme [P G T]	CG4001-PA CG4001-PB CG4001-PC		CG6058-PA CG6058-PB CG6058-PE CG6058-PF	CG2171-PA CG2171-PB	CG12055-PA CG8893-PA CG9010-PA	CG3127-PA CG9961-PA	CG1721-PA CG17645-PA CG7059-PA CG7059-PC CG7059-PD
cel[P G T]	C50F4.2 Y71H10A.1a Y71H10A.1b		T05D4.1	Y17G7B.7	F33H1.2 K10B3.7 K10B3.8 T09F3.3	T03F1.3	

Screenshot:

ComPath' Enzyme-Genome Table –

TNITED A CTT\/EI

- Genomes to be searched can be limited by checking checkbox(es) on the top row. If not, ComPath uses all genomes in this table.
- 2. Please make sure that an EC number is set from the third column.

Merge	All/None	Select One	🗖 mtu	🗖 bsu	🗖 bha	🗖 hin	C eco	🗖 aae	🗖 bsu	🗖 һру	🗖 mge
	00	° 1.1.1.1	□ Rv0162c □ Rv0761c □ Rv1530 □ Rv1862	☐ BG11902 ☐ BG11941 ☐ BG13553	□ BH1829	П ню185	□ b0356 □ b1241 □ b1478 □ b3589	□ aq_1240 □ aq_1362	☐ BG11902 ☐ BG11941 ☐ BG13553		
	00	C 1.1.1.2	□ Rv3045	□ BG12562					🗖 BG12562	□ HP1104	
	00	C 1.1.1.27		□ BG19003	□ внз937				□ BG19003		□ MG460
	00	O 1.1.1.37	□ Rv1240	□ BG11386 □ BG13206	П внз158	□ HI1031 □ HI1210	□ b0801 □ b3236 □ b3575	□ aq_1665 □ aq_1782	□ BG11386 □ BG13206		
	00	0 1.1.99.8		1							
	00	O 1.2.1.1	□ Rv0761c	□ BG11902	🗖 ВН1829	🗖 HI0185	□ b0356	8	□ BG11902		
	сc	C 1.2.1.10	□ Rv3535c				□ b0351 □ b1241				
	00	0 1.2.1.12	□ Rv1436	□ BG10827 □ BG12592	□ BH3149 □ BH3560	П нюоот	□ b1779	□ aq_1065	□ BG10827 □ BG12592	□ HP0921 □ HP1346	П MG301
	00	O 1.2.1.19									
Merge	All/None	Select One	🗖 mtu	🗖 bsu	🗖 bha	🗖 hin	C eco	🗖 aae	🗖 bsu	🗖 һру	🗖 mge
П	0.0	0 1213	Rv0147 Rv0223c Rv0458	□ BG11355 □ BG11903 □ BG12582	П ВН0539 П ВН0681 П вноясс		F 61200	F 58 186	□ BG11355 □ BG11903 □ BG12582		

Screenshot: Upload Query Genome and Table Editing Functions

PATH 00010 : Glycolysis / Gluconeogenesis

Save plain-text table data

Optional: Uploading un-annotated genome

- You may upload a FASTA-formatted protein sequence file which are prepared from a un-annotated genome. In our current implimentation, only one sequence file is acceptable. Try a <u>sample genome</u> This sample genome is a FAA file of *Yersinia Pestis* KIM strain from GenBank, but its header is modified for the testing purpose.
- 2. Select Browse...
- 3. Your query genome will be displayed as "upload" in the table.
- 4. Then complete your submission by click button. Upload a query sequence file and edit your table using the following operations. At first, all cells of the new column are empty excpet a new genome ID on the top.

I. Table editing

- 1. Reset this spreadsheet before starting analysis.
- 2. Chechbox(es) should be checked ONLY IF you want to merge rows. Otherwise check a radio button
- 3. Default color of genes found by EC-based KEGG database search is gray.
- 4. Delete gene(s) , which are checked.
- 5. Merge rows with a new EC assignment . The merged row will be shown on the bottom

6.	Add a gene	into this EC (row)	and this Genome (column)	. This new gene wil
	be highlighted by bla	ick letter.		

Sequence Analyses

Missing enzyme search

- Pairwise (FASTA) and multiple sequence alignment (CLUSTALW),
- Domain search using SCOPEC/SUPERFAMILY and PDB domains
- Domain-based analysis using hidden markov models (HMM),
- Contextual sequence analysis (currently not available)

Sequence analysis for further investigation

- Phylogenetic analysis of enzymes in selected genomes,
- Gibbs motif sampler.
- BAG clustering
- Contextual sequence analysis (currently not available)

Screenshot: Sequence Analysis Functions

II. Functions to detect missing pathway component candidates. Select EC and genes from the table below and then choose function(s).

Choose and run each tool MUNUALLY

- 1. SCOPEC and SUPERFAMILY search Added genes will be highlighted by red
- 2. HMM search the whole sequences Added genes will be highlighted by green
- 3. HMM search common shared regions Added genes will be highlighted by blue
- 4. Contextual analysis NOT AVAILABLE YET!: Added genes will be highlighted by magenta

OR

Select a series of analyses with e-value. This will AUTOMATICALLY search candidates with lower e-value than cutoff.Prediction will be done by vertial order (top-to-bottom).

III. Prediction confirmation

- 1. Phylogenetic tree analysis | with ATV tree viewer 📀 or PHYLIP O
- 2. Cluster genes | with Z-score of 50
- 3. Retrieve selected sequences
- 4. Gibbs Motif Sampler with motif lenth of 10

Conclusion

The Kyoto Encyclopedia of Genes and Genomes is a vast library of information gathered from fully sequenced genomes, genes, proteins, pathways, and chemical compounds pertaining to over a hundred different species of both prokaryotes and eukaryotes

ComPath is one of the tools that could aid the data extraction from KEGG

References

- http://bioinformatics.bc.edu/~clotelab/misc/PPT/kegg Seo.ppt
- bio.informatics.indiana.edu/sunkim/talks/
- http://www.docstoc.com/docs/512126/ComPath-Comparative-Metabolic-Pathway-Analysis-Tool