

Evolutionary and historical biogeography of animal diversity

Learning objectives

- The students can explain the common ancestor of animal kingdom.
- The students can explain the historical biogeography of animal.
- The students can explain the invasion of animal from aquatic to terrestrial habitat.
- The students can explain the basic mechanism of speciation, allopatric and non-allopatric.

The Common Ancestor of Animal Kingdom

Characteristics of Animals

Trichoplax adhaerens

- Animals or "metazoans" are typically heterotrophic, multicellular organisms with diploid, eukaryotic cells.
- Trichoplax adhaerens is defined as an animal by the presence of different somatic (i.e., non-reproductive) cell types and by impermeable cell-cell connections.

Blackstone, 2009

Two Hypotheses for the Branching Order of Groups at the Root of the Metazoan Tree

The choanoflagellates serve as an outgroup in the analysis, and sponges are the sister group to the placozoan + cnidarian + ctenophore + bilaterian clade.

Bilaterians are the sister group to the placozoan + sponge + ctenophore + cnidarian clade, while placozoans are the sister group to the sponge + ctenophore + cnidarian clade.

Ancestry and evolution of animal–bacterial interactions

- Choanoflagellates as the last common ancestor of animal kingdom.
- Urmetazoan is the group of animal with multicellular and produce differentiated cell types (ex. Egg & sperm)

R.A. Alegado & N. King, 2014

BIOLOGI

Conserved morphology and ultrastructure of Choanoflagellates and Sponge choanocytes

The collar complex is conserved in choanoflagellates (A. *S. rosetta*) and sponge collar cells (B. *Sycon coactum*)

flagellum (fL), microvilli (mv), a nucleus (nu), and a food vacuole (fv)

Brunet & King, 2017 PA DEPARTMENT OF BIOLOGY, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, UNIVERSITAS INDONESIA

The Historical Biogeography of Animal

Zoogeographic regions

Plate tectonic regulation of global marine animal diversity

A. An index of continental block fragmentation

B. Genus richness

Carb, Carboniferous; Cm, Cambrian; Dev, Devonian; Jur, Jurassic; K, Cretaceous; Ng, Neogene; Ord,Ordovician; Perm, Permian; Pg, Paleogene; S, Silurian; Tr, Triassic.

Zaffos, et.al., 2017

Evolution: Flight of the Ratites

The Malagasy giant elephant bird or vorompatra

Maderspacher, 2017

Historical Biogeography of Ratites

Sanmartín, 2012

Reconstructions of Land and Sea in the Indo-Australian Archipelago

Lohmann et al. 2011

The Geographical Distribution of *Draco* sumatranus Clades

Lawalata, 2011

Phylogenetics and Biogeography of The Walking Shark Genus *Hemiscyllium*

EMIPA DEPARTMENT OF BIOLOGY, FACULTY OF MATHEMATICS AND NATURAL SCIENCES, UNIVERSITAS INDONESIA

UNIVERSITAS INDONESIA Yorde: Stredge: Sardia

Distribution of Species in The Genus Hylobates

Geissm

The Invasion of Animal From Aquatic to Terrestrial Habitat

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

Timeline of the colonization of land in the early Paleozoic

- A. Chelicerates \rightarrow amblypygid arachnid
- B. Trilobites \rightarrow Trinucleidae
- C. Myriapods → scutigeromorph centipede, *Scutigera coleoptrata*
- D. Crustaceans \rightarrow stomatopod or mantis shrimp
- E. Insects \rightarrow dragonfly

Garwood & Edgecombe, 2011

Fossils Record a Number of Arthropod Groups

- A. Trigonotarbid arachnid (Eophrynus prestvicii)
- B. Centipede (Devonobius delta)
- C. The Devonian harvestman arachnid (*Eophalangium sheari*)
- D. Roachoid insect (Archimylacris eggintoni)
- E. Carboniferous scorpion (Compsoscorpius buthiformis)

Animals Arrived on Land Much Earlier than The Fossil Evidence

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

Dunn, 2013

Evolution of The Mechanisms for Water Acquisition

Cuticle and Spiracles as An Adaptation of Arthropod in Terrestrial

The Lineage Leading to Modern Tetrapods

- The loss of the gill cover
- Reduction in size of the postparietal bones
- Gradual reshaping of the skull

The Basic Mechanism of Speciation

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

Evolutionary Divergence of Separated Sea Urchin Population

Allopatric speciation (geographical speciation)

Formation of the Isthmus of Panama separated an ancestral population, leading to evolution of separate Caribbean (*Eucidaris tribuloides*) and Pacific (*Eucidaris thouarsi*) species.

Habitat as A Barrier of Gene Flow

Non-Allopatric speciation (simpatric speciation)

Table 2. Key features of the three L. saxatilis morph pairs.

location	morphs	size	shell form	habitat	adaptation
UK	н	small	thin, wide aperture	high shore	resistant to wave action
Spain	M	large	thick, narrow aperture	mid shore	resistant to crab predation
	RB	large	thick, ridged, narrow aperture	high shore (barnacles)	resistant to crab predation
Sweden	SU	small	thin, wide aperture	lower shore (mussels)	resistant to wave action
	E	small	thin, wide aperture	exposed	resistant to wave action
	S	large	thick, narrow aperture	sheltered	resistant to crab predation

^a I is an index of assortative mating: I=0, random mating; I=1, complete assortment.

The three morph pairs in *Littorina s saxatilis*. Shell height is typically (a) approximately 5–10 mm for H/SU/E (wave resistant) and (b) 10–15 mm for M/RB/S (predation resistant).

Butlin, et. al. 2008

Distribution, Genomic Diversity, and Population Structure of the Genus *Pongo*

