
CSIM601251
Presenter: Bayu Anggorojati

Slide By : Erdefi Rakun
Fasilkom UI

• Performance Definition

• Factors Affecting Performance

• Measurement Parameters for Performance

• Co-relation Among Performance Parameters

• Benchmarking

• SPEC ’95

• Amdahl’s Law

Performance and Benchmarking 2

Note: These slides are taken from Aaron Tan’s slide

• Two perspectives:
– Purchasing perspective

– Design perspective

• Performance indices:
– Which has the best performance?

– Which has the least cost?

– Which has best performance/cost?

• Both require:
– Basis for comparison

– Metric for evaluation

• Our goal is to understand performance of machine’s
architectural design.

Performance and Benchmarking 3

• Two notions of performance

Plane DC to Paris Speed Passengers
Throughput

(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700

AirBus 3 hours 1350 mph 132 178,200

Performance and Benchmarking 4

◼ Which has higher performance?
❑ Time to do ONE task

◼ Execution time, response, latency

❑ Tasks per day, hour, week, …

◼ Throughput, bandwidth.

◼ Response time and throughput might be in opposition.

• ‘Flying time’ of AirBus versus Boeing 747:

– AirBus is 1350 mph / 610 mph = 2.2 times faster = 6.5
hr / 3 hr.

• ‘Throughput’ of AirBus versus Boeing 747:

– Boeing is 286,700 pmph / 178,200 pmph = 1.6 times
faster.

• Conclusion:

– AirBus is 2.2 times faster in terms of flying time.

– Boeing is 1.6 times faster in terms of throughput.

Performance and Benchmarking 5

• Response time/execution time/latency:
– Time between start and end of an event

• How long does it take to execute my job?

• How long must I wait for the database query?

• Throughput:
– Total amount of work (or number of jobs) done

• How many jobs can the machine run at once?

• What is the average execution rate?

• If we upgrade a machine with a new processor, what do
we improve?

• If we add a new machine to the lab, what do we
improve?

Performance and Benchmarking 6

• Performance is in units of things-per-second
– Bigger is better

• If we are primarily concerned with response time
– Smaller is better

x
x time

eperformanc 1=

y

x

x

y

eperformanc

eperformanc

time

time
Speedup ==

Performance and Benchmarking 7

◼ “X is n times faster than Y” means the speedup n
is:

• There are different measures of execution time in
computer performance.

• Elapsed time
– Counts everything (including disk and memory accesses, I/O,

etc.)

– Not too good for comparison purposes.

• CPU time
– Doesn’t include I/O or time spent running other programs.

– Can be broken up into system time and user time.

• Our focus: User CPU time
– Time spent executing the lines of code in the program

Performance and Benchmarking 8

• Instead of reporting execution time in seconds, we often
use clock cycles (basic time unit in machine).

Performance and Benchmarking 9

▪ Cycle time (or cycle period or clock period) = time between
two consecutive rising edges, measured in seconds.

cycle

seconds

program

cycles

program

seconds
=

Clock

Cycle time

▪ Clock rate (or clock frequency) = 1/cycle-time = number
of cycles per second (1 Hz = 1 cycle/second).
▪ Example: A 200 MHz clock has cycle time of 1/(200x106) = 5 x 10-9

seconds = 5 nanoseconds.

▪ Therefore, to improve performance (everything else
being equal), you can do the following:

 Reduce the number of cycles for a program, or

 Reduce the clock cycle time, or said in another way,

 Increase the clock rate.

Performance and Benchmarking 10

seconds

program
=

cycles

program


seconds

cycle

• Can we assume that
– The number of cycles = number of instructions?

– The number of cycles is proportional to number of instructions?

Performance and Benchmarking 11

1s
t

in
st

ru
ct

io
n

2n
d

 i
n

st
ru

ct
io

n

3r
d

 i
n

st
ru

ct
io

n

4t
h

5t
h

6t
h ...

Clock

◼ No, the assumptions are incorrect.

• Different instructions take different amount of time to
finish.

Performance and Benchmarking 12

Clock

◼ For example:
❑ Multiply instruction may take more cycles than an Add

instruction.

❑ Floating-point operations take longer than integer operations.

❑ Accessing memory takes more time than accessing registers.

• Our favorite program runs in 10 seconds on computer A,
which has a 400 MHz clock. We are trying to help a computer
designer build a new machine B, that will run this program in
6 seconds. The designer can use new (or perhaps more
expensive) technology to substantially increase the clock rate,
but has informed us that this increase will affect the rest of the
CPU design, causing machine B to require 1.2 times as many
clock cycles as machine A for the same program. What clock
rate should we tell the designer to target at?

Performance and Benchmarking 13

◼ ANSWER:
Let C be the number of clock cycles required for that program.

For A: Time = 10 sec. = C  1/400MHz

For B: Time = 6 sec. = (1.2  C)  1/clock_rateB

Therefore, clock_rateB = ?

• A given program will require

Performance and Benchmarking 14

Some number of instructions (machine instructions)

 average CPI

Some number of cycles

 cycle time

Some number of seconds

◼ Recall that different instructions have different
number of cycles.

• Average cycle per instruction (CPI)

CPI = (CPU time  Clock rate) / Instruction count

= Clock cycles / Instruction count

Performance and Benchmarking 15

◼ Invest resources where time is spent!

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

Ik = instruction frequency

where
countn Instructio

I
F

k

k
=F k

n

k
k
=

=1
CPICPI

• A compiler designer is deciding between 2 codes for a particular
machine. Based on the hardware implementation, there are 3 classes
of instructions: Class A, Class B, and Class C, and they require 1, 2,
and 3 cycles respectively.

• First code has 5 instructions: 2 of A, 1 of B, and 2 of C.
Second code has 6 instructions: 4 of A, 1 of B, and 1 of C.

• Which code is faster? By how much?

• What is the (average) CPI for each code?

Performance and Benchmarking 16

◼ ANSWER:
Let T be the cycle time.

Time(code1) = (21 + 12 + 23)  T = 10T

Time(code2) = (41 + 12 + 13)  T = 9T

Time(code1)/Time(code2) =

CPI(code1) =

CPI(code2) =



• Suppose we have 2 implementations of the same ISA, and a
program is run on these 2 machines.

• Machine A has a clock cycle time of 10 ns and a CPI of 2.0.
Machine B has a clock cycle time of 20 ns and a CPI of 1.2.

• Which machine is faster for this program? By how much?

Performance and Benchmarking 17

◼ ANSWER:
Let N be the number of instructions.

Machine A: Time = N  2.0  10 ns

Machine B: Time =

Performance(A)/Performance(B) = Time(B)/Time(A)

=

• You are given 2 machine designs M1 and M2 for performance
benchmarking. Both M1 and M2 have the same ISA, but different
hardware implementations and compilers. Assuming that the clock
cycle times for M1 and M2 are the same, performance study gives
the following measurements for the 2 designs.

Instruction

class

For M1 For M2

CPI
No. of instructions

executed
CPI

No. of instructions

executed

A 1 3,000,000,000,000 2 2,700,000,000,000

B 2 2,000,000,000,000 3 1,800,000,000,000

C 3 2,000,000,000,000 3 1,800,000,000,000

D 4 1,000,000,000,000 2 900,000,000,000

Performance and Benchmarking 18

a) What is the CPI for each machine?

Performance and Benchmarking 19

Let Y = 1,000,000,000,000

CPI(M1) = (3Y1 + 2Y2 + 2Y3 + Y4) / (3Y + 2Y + 2Y + Y)
= 17Y / 8Y = 2.125

CPI(M2) =
=

b) Which machine is faster? By how much?

Let C be clock cycle.

Time(M1) = 2.125  (8Y  C)
Time(M2) =

M1 is faster than M2 by

c) To further improve the performance of the machines, a new
compiler technique is introduced. The compiler can simply
eliminate all class D instructions from the benchmark program
without any side effects. (That is, there is no change to the number
of class A, B and C instructions executed in the 2 machines.) With
this new technique, which machine is faster? By how much?

Performance and Benchmarking 20

Let Y = 1,000,000,000,000; Let C be clock cycle.

CPI(M1) = (3Y1 + 2Y2 + 2Y3) / (3Y + 2Y + 2Y) = 13Y / 7Y = 1.857

CPI(M2) =
=

Time(M1) = 1.857  (7Y  C)

Time(M2) =

M1 is faster than M2 by

d) Alternatively, to further improve the performance of the machines,
a new hardware technique is introduced. The hardware can simply
execute all class D instructions in zero times without any side
effects. (There is still execution for class D instructions.) With this
new technique, which machine is faster? By how much?

Performance and Benchmarking 21

Let Y = 1,000,000,000,000; Let C be clock cycle.

CPI(M1) = (3Y1 + 2Y2 + 2Y3 + Y0) / (3Y + 2Y + 2Y + Y)
= 13Y / 8Y = 1.625

CPI(M2) =
=

Time(M1) = 1.625  (8Y  C)

Time(M2) =

M1 is faster than M2 by

• Performance is determined by execution time.

• Does any of the following variables equal
performance?
– Number of cycles to execute a program?

– Number of instructions in a program?

– Number of cycles per second (cycle time)?

– Average number of cycles per instruction?

– Average number of instructions per second?

• Answer: No to all.
– Common pitfall: thinking that one of the variables is

indicative of performance when it really isn’t.

Performance and Benchmarking 22

• CPU performance depends on:
– Clock cycle time → Hardware technology and organisation

– CPI → Organisation and ISA

– Instruction count → ISA and compiler

• Be careful of the following concepts:
– Machine → ISA and hardware organisation

– Machine → cycle time

– ISA + hardware organisation → number of cycles for any
instruction (this is not average CPI)

– ISA + compiler + program → number of instructions executed

– Therefore, ISA + Compiler + Program + Hardware organisation
+ Cycle time → Total CPU time.

Performance and Benchmarking 23

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

• Performance is specific to a particular program.
– Total execution time is a consistent summary of performance.

• For a given architecture, performance increase comes
from:
– Increase in clock rate (without adverse CPI effects)

– Improvement in processor organisation that lowers CPI

– Compiler enhancement that lowers CPI and/or instruction count

• Pitfall: expecting improvement in one aspect of a
machine’s performance to affect the total performance.

Performance and Benchmarking 24

• Evaluating Performance

– Read up COD sections 4.1 – 4.3 (3rd edition)

– Read up COD section 1.4 (4th edition)

Performance and Benchmarking 25

▪ Benchmarking: Choosing programs to evaluate
performance

▪ Measure the performance of a machine using a set of
programs which will hopefully emulate the workload
generated by the user’s programs.

▪ Benchmarks: programs designed to measure
performance.

Performance and Benchmarking 26

Performance and Benchmarking 27

Actual Target
Workload

Full Application
Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative

• very specific

• non-portable

• difficult to run or measure

• hard to identify cause
• portable

• widely used

• improvements
useful in reality

• less representative

• easy to run, early
in design cycle

• easy to “fool”

• identify peak
capability and
potential
bottlenecks

• “peak” may be a
long way from
application
performance

▪ SPEC (Systems Performance Evaluation Cooperative)
▪ Companies have agreed on a set of real program and inputs

▪ 18 application benchmarks (with inputs) reflecting a technical
computing workload

▪ 8 integer

▪ go, m88ksim, gcc, compress, li, ijpeg, perl, vortex

▪ 10 floating-point intensive

▪ tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi,
fppp, wave5

▪ Must run with standard compiler flags

▪ Eliminate special undocumented incantations that may not even
generate working code for real programs

▪ Can still be abused (Intel’s “other” bug)

▪ Valuable indicator of performance (and compiler technology)

Performance and Benchmarking 28

Benchmark Description

go Artificial intelligence; plays the game of Go

m88ksim Motorola 88k chip simulator; runs test program

gcc The Gnu C compiler generating SPARC code

compress Compresses and decompresses file in memory

li Lisp interpreter

ijpeg Graphic compression and decompression

perl Manipulates strings & prime numbers in the special-purpose prog. lang. Perl

vortex A database program

tomcatv A mesh generation program

swim Shallow water model with 513 x 513 grid

su2cor quantum physics; Monte Carlo simulation

hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations

mgrid Multigrid solver in 3-D potential field

applu Parabolic/elliptic partial differential equations

trub3d Simulates isotropic, homogeneous turbulence in a cube

apsi Solves problems regarding temperature, wind velocity, & distribution of pollutant

fpppp Quantum chemistry

wave5 Plasma physics; electromagnetic particle simulation

Performance and Benchmarking 29

▪ For a given ISA, increases in CPU performance can
come from 3 sources:

1. Increase in clock rate

2. Improvements in processor organization that lower that CPI

3. Compiler enhancements that lower the instruction count or
generate instructions with a lower average CPI (e.g., by using
simpler instructions)

▪ Next slide shows the SPECint95 and SPECfp95
measurements for a series of Intel Pentium processors
and Pentium Pro processors.
▪ Does doubling the clock rate double performance?

▪ Can a machine with a slower clock rate have better
performance?

Performance and Benchmarking 30

▪ At same clock rate, Pentium Pro is 1.4 to 1.5 times faster (for SPECint95) and
1.7 to 1.8 times faster (for SPECfp95) – improvements come from
organizational enhancements (pipelining, memory system) to the Pentium
Pro.

▪ Performance increases at a slower rate than increase in clock rate –
bottleneck at memory system, Amdahl’s law at play here.

Performance and Benchmarking 31

Clock rate (MHz)

S
P

E
C

in
t

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

Pentium
Clock rate (MHz)

S
P

E
C

fp
Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

▪ Pitfall: Expecting the improvement of one aspect of a
machine to increase performance by an amount
proportional to the size of the improvement.

▪ Example:
▪ Suppose a program runs in 100 seconds on a machine, with

multiply operations responsible for 80 seconds of this time. How
much do we have to improve the speed of multiplication if we
want the program to run 4 times faster?

Performance and Benchmarking 32

100 (total time) = 80 (for multiply) + UA (unaffected)

100/4 (new total time) =

➔Speedup =

▪ Example (continued):
▪ How about making it 5 times faster?

Performance and Benchmarking 33

100 (total time) = 80 (for multiply) + UA (unaffected)

100/5 (new total time) =

➔Speedup =

▪ This concept is the Amdahl’s law. Performance is limited
to the non-speedup portion of the program.

▪ Execution time after improvement = Execution time of
unaffected part + (execution time of affected part /
speedup)

▪ Corollary of Amdahl’s law: Make the common case fast.

Performance and Benchmarking 34

▪ Suppose we enhance a machine making all floating-
point instructions run five times faster. If the execution
time of some benchmark before the floating-point
enhancement is 12 seconds, what will the speedup be if
half of the 12 seconds is spent executing floating-point
instructions?

Performance and Benchmarking 35

Time =

Speedup =

▪ We are looking for a benchmark to show off the new
floating-point unit described in the previous example,
and we want the overall benchmark to show a speedup
of 3. One benchmark we are considering runs for 100
seconds with the old floating-point hardware. How
much of the execution time would floating-point
instructions have to account for in this program in order
to yield our desired speedup on this benchmark?

Performance and Benchmarking 36

Speedup =

Time_FI =

• SPEC Benchmarks

– Read up COD sections 4.4 – 4.6 (3rd edition)

– Read up COD sections 1.7 – 1.9 (4th edition)

Performance and Benchmarking 37

