Combinational Logic Design

CSIM601251 Instructor: Tim Dosen DDAK Slide By : Erdefi Rakun Fasilkom UI

Outline:

- Analysis Procedure
- Design Methods
- Gate-level (SSI) Design
- Block-Level Design

Note: Portion of these materials are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Analysis Procedure

• Given a combinational circuit, how do you analyze its function?

- Steps:
 - 1. Label the inputs and outputs.
 - 2. Obtain the functions of intermediate points and the outputs
 - 3. Draw the truth table.
 - 4. Deduce the functionality of the circuit **C** Half adder.

	Α	В	(A+B)	(A'+B')	F1	F2
	0	0	0	1	0	0
	0	1	1	1	1	0
5.	1	0	1	1	1	0
	1	1	1	0	0	1

Design Procedure

- 1. Specification
 - Write a specification for the circuit if one is not already available
- 2. Formulation
 - Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification
 - Apply hierarchical design if appropriate
- 3. Optimization
 - Apply 2-level and multiple-level optimization
 - Draw a logic diagram or provide a netlist for the resulting circuit using ANDs, ORs, and inverters

Design Procedure

- 4. Technology Mapping
 - Map the logic diagram or netlist to the implementation technology selected
- 5. Verification
 - Verify the correctness of the final design manually or using simulation

Design Example

- 1. Specification
 - BCD to Excess-3 code converter
 - Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits
 - BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively
 - Excess-3 code words for digits 0 through 9: 4bit patterns consisting of 3 (binary 0011) added to each BCD code word
 - Implementation:
 - multiple-level circuit
 - NAND gates (including inverters)

- 2. Formulation
 - Conversion of 4-bit codes can be most easily formulated by a truth table

—	Variables	Input BCD	Output Excess-3
	- BCD:	ABCD	WX Y Z
	A,B,C,D	0000	0011
	Variablas	0001	0100
_	variables	0010	0101
	- <u>Excess-3</u>	0011	0110
	W,X,Y,Z	0100	0111
		0101	1000
—	Don t Cares	0110	1001
	- BCD 1010	0111	1010
	to 1111	1000	1011
		1001	1100

3. Optimization a. 2-level using K-maps W = A + BC + BD $X = \overline{B}C + \overline{B}D + B\overline{C}.\overline{D}$ $Y = CD + \overline{C}.\overline{D}$ $Z = \overline{D}$

- 3. Optimization (continued)
 - b. Multiple-level using transformations W = A + BC + BD $X = \overline{B}C + \overline{B}D + B\overline{C}.\overline{D}$

$$Y = \underline{CD} + \overline{C}.\overline{D}$$

$$Z = \overline{D}$$

$$G = 7 + 10 + 6 + 0 = 0$$

– Perform extraction, finding factor:

$$T_{1} = C + D$$

$$W = A + BT_{1}$$

$$X = \overline{B}T_{1} + B\overline{C}.\overline{D}$$

$$Y = CD + \overline{C}.\overline{D}$$

$$G = 2 + 4 + 7 + 6 + 0 = 19$$

23

- 3. Optimization (continued)
 - b. Multiple-level using transformations
 - $T_{1} = C + D$ $W = A + BT_{1}$ $X = \overline{B}T_{1} + B\overline{C}.\overline{D}$ $Y = CD + \overline{C}.\overline{D}$ G = 19
 - An additional extraction not shown in the text since it uses a <u>Boolean transformation</u>: $(\overline{C}, \overline{D} = \overline{C} + \overline{D} = \overline{T_1})$: $W = A + BT_1$ $X = \overline{B}T_1 + \overline{B}T_1$ $Y = CD + \overline{T_1}$ $Z = \overline{D}$ G = 2 + 4 + 6 + 4 + 0 = 16!

- 4. Mapping Procedures
 - To NAND gates
 - To NOR gates
 - Mapping to multiple types of logic blocks is covered in the reading supplement: Advanced Technology Mapping.

Technology Mapping Mapping with a library containing AND, OR, NOT

Technology Mapping

Mapping with a library containing inverters and 2-input NAND

Verification

- Verification show that the final circuit designed implements the original specification
- Simple specifications are:
 - truth tables
 - Boolean equations
 - HDL code
- If the above result from <u>formulation</u> and are not the <u>original</u> <u>specification</u>, it is critical that the formulation process be flawless for the verification to be valid!

Basic Verification Methods

- Manual Logic Analysis
 - Find the truth table or Boolean equations for the final circuit
 - Compare the final circuit truth table with the specified truth table, or
 - Show that the Boolean equations for the final circuit are equal to the specified Boolean equations
- Simulation
 - Simulate the final circuit (or its netlist, possibly written as an HDL) and the specified truth table, equations, or HDL description using test input values that fully validate correctness.
 - The obvious test for a combinational circuit is application of all possible "care" input combinations from the specification

Verification Example: Manual Analysis

- BCD-to-Excess 3 Code Converter
 - Find the SOP Boolean equations from the final circuit.
 - Find the truth table from these equations
 - Compare to the formulation truth table
- Finding the B<u>oole</u>an Equations: $T_1 = C + D = C + D$ $W = A (T_1 B) = A + B T_1$ $X = (T_1 B) (B) = T_1 \overline{CDB} \overline{B} \overline{C} \overline{D}$ $Y = C + D = \overline{CDC} \overline{C} \overline{D}$

Verification Example: Manual Analysis

• Find the circuit truth table from the equations and compare to specification truth table:

	Output Excess-3	Input BCD
-		
	0011	0000
	0100	0001
	0101	0010
I he tables match!	0110	0011
	0111	0100
	1000	0101
	1001	0110
	1010	0111
	1011	1000
	1100	1001

Verification Example: Simulation Analysis

	Float (M.70d) - [test.wcfg	*]					Last Mill	Contractions	Cruhate	Manual Res	and the second se							
Name Using L200200 pc	🔜 File Edit View Simul	lation Window	Layout Hel AA ि ↓ ↑ €)] <u>-</u>	<i>₽</i> №	10 P 🗟 🗠		°ı 🖸 🕨 ▶ ^ℤ 1	.00us 🔻 🔙									- 6)
Name Value 1,200,20 ps 1,200,	<i>▶</i>			1	2											1,200,325 ps		-
	BCD	Value	^{1,7}	200,200 ps 1,200,2	10 ps 1,200,22	20 ps 1,200,23	0 ps 1,200,2	240 ps 1,200,2	50 ps 1,200,2	60 ps 1,200,2	70 ps 1,200,28	0 ps 1,200,29	0 ps 1,200,300	0 ps 1,200,31	0 ps 1,200,3	20 ps 1,200,3	330 ps 1,200,	340 ps 1,2
	Со Цара Со Цар	1 0																
	E C La C L	1 0																
	Excess-3 W w W W	1																
	r° Lûy ≁i Lûz	1 0																
		1																
350 ps 220 ps 1240 ps 1250 ps 1260 ps 1270 ps 1280 ps 1290 ps 1300 ps 1310 ps 1320 ps 1330 ps 1340 ps 350 ps 1360 ps 1370 ps			220 ps	230 ps	240 ps	250 ps	260 ps	270 ps	280 ps	290 ps	300 ps	310 ps	320 ps	330 ps	340 ps	350 ps 350 ps	360 ps	370 ps
X1: 1,200,325 ps	4	< >	X1: 1,200,325	ps														
test.wcfg*				test.wcfg*														1 200 405
							_								-		Sim Tim	e: 1,200,400 p: 4:11 PM

Outline:

- Analysis Procedure
- Design Methods
- Gate-level (SSI) Design
- Block-Level Design

Note: Portion of these materials are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Beginning Hierarchical Design

- To control the complexity of the function mapping inputs to outputs:
 - Decompose the function into smaller pieces called *blocks*
 - Decompose each block's function into smaller blocks, repeating as necessary until all blocks are small enough
 - Any block not decomposed is called a *primitive block*
 - The collection of all blocks including the decomposed ones is a *hierarchy*
- Example: 9-input parity tree (see next slide)
 - Top Level: 9 inputs, one output
 - 2nd Level: Four 3-bit odd parity trees in two levels
 - 3rd Level: Two 2-bit exclusive-OR functions
 - Primitives: Four 2-input NAND gates
 - Design requires 4 X 2 X 4 = 32 2-input NAND gates

Hierarchy for Parity Tree Example

Reusable Functions

- Whenever possible, we try to decompose a complex design into common, *reusable* function blocks
- These blocks are
 - verified and well-documented
 - placed in libraries for future use

Top-Down versus Bottom-Up

- A *top-down design* proceeds from an abstract, highlevel specification to a more and more detailed design by decomposition and successive refinement
- A *bottom-up design* starts with detailed primitive blocks and combines them into larger and more complex functional blocks
- Design usually proceeds top-down to known building blocks ranging from complete CPUs to primitive logic gates or electronic components.
- Much of the material in this chapter is devoted to learning about combinational blocks used in top-down design.

Gate-Level (SSI) Design: Half Adder (1/2)

- Design procedure:
 - 1. State problem Example: Build a Half Adder.
 - 2. Determine and label the inputs and outputs of circuit. Example: Two inputs and two outputs labelled, as shown below.

Х	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Gate-Level (SSI) Design: Half Adder (2/2)

4. Obtain simplified Boolean functions. Example: $C = X \cdot Y$ $S = X' \cdot Y + X \cdot Y' = X \oplus Y$

Х	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

5. Draw logic diagram.

Half Adder

Gate-Level (SSI) Design: Full Adder (1/5)

- Half adder adds up only two bits.
- To add two binary numbers, we need to add 3 bits (including the *carry*). 1 1 1 carry

`	\mathbf{U}	57			-	-	-		Curry
– E:	xample:				0	0	1	1	Х
	Γ			+	0	1	1	1	Y
					1	0	1	0	S

 Need Full Adder (so called as it can be made from two half adders).

Gate-Level (SSI) Design: Full Adder (2/5)

• Truth table:

Χ	Υ	Ζ	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note:

- Z carry in (to the current position)
- C carry out (to the next position)

Using K-map, simplified SOP form:
 C = ?
 S = ?

Gate-Level (SSI) Design: Full Adder (3/5)

• Alternative formulae using algebraic manipulation:

 $C = X \cdot Y + X \cdot Z + Y \cdot Z$ = X \cdot Y + (X + Y) \cdot Z = X \cdot Y + ((X \overline{O}Y) + X \cdot Y) \cdot Z = X \cdot Y + (X \overline{O}Y) \cdot Z + X \cdot Y \cdot Z = X \cdot Y + X \cdot Y \cdot Z + (X \overline{O}Y) \cdot Z = X \cdot Y + (X \overline{O}Y) \cdot Z

 $S = X' \cdot Y' \cdot Z + X' \cdot Y \cdot Z' + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z$ = X' \cdot (Y' \cdot Z + Y \cdot Z') + X \cdot (Y' \cdot Z' + Y \cdot Z) = X' \cdot (Y \overline{D}Z) + X \cdot (Y \overline{D}Z)' = X \overline{O}(Y \overline{D}Z)

Gate-Level (SSI) Design: Full Adder (4/5)

• Circuit for above formulae:

 $C = X \cdot Y + (X \oplus Y) \cdot Z$

Full Adder made from two <u>Half-Adders</u> (+ an OR gate).

Gate-Level (SSI) Design: Full Adder (5/5)

Circuit for above formulae: • Block diagrams. $C = X \cdot Y + (X \oplus Y) \cdot Z$ $S = X \oplus (Y \oplus Z)$ (X⊕Y) Х – Sum Y -Sum S $-\nu$ Half Half Adder Adder Carry Carry Ζ

Full Adder made from two <u>Half-Adders</u> (+ an OR gate).

Block-Level Design

- More complex circuits can also be built using block-level method.
- In general, block-level design method (as opposed to gate-level design) relies on algorithms or formulae of the circuit, which are obtained by decomposing the main problem to sub-problems recursively (until small enough to be directly solved by blocks of circuits).
- Simple examples using 4-bit parallel adder as building blocks for 16-bit Parallel Adder

4-Bit Parallel Adder (1/4)

• Consider a circuit to add two 4-bit numbers together and a carry-in, to produce a 5-bit result.

 5-bit result is sufficient because the largest result is: 1111₂ + 1111₂ + 1₂ = 11111₂

4-Bit Parallel Adder (2/4)

- SSI design technique should not be used here.
- Truth table for 9 inputs is too big: 2⁹ = 512 rows!

$X_4 X_3 X_2 X_1$	Y ₄ Y ₃ Y ₂ Y ₁	C ₁	C ₅	$S_4S_3S_2S_1$
0000	0000	0	0	0000
0000	0000	1	0	0001
0000	0001	0	0	0001
0101	1101	1	1	0011
1111	1111	1	1	1111

Simplification becomes too complicated.

4-Bit Parallel Adder (3/4)

- Alternative design possible.
- Addition formula for each pair of bits (with carry in), $C_{i+1}S_i = X_i + Y_i + C_i$

has the same function as a full adder: $C_{i+1} = X_i \cdot Y_i + (X_i \oplus Y_i) \cdot C_i$ $S_i = X_i \oplus Y_i \oplus C_i$

4-Bit Parallel Adder (4/4)

• Cascading 4 full adders via their carries, we get:

Parallel Adder

- Note that carry propagated by cascading the carry from one full adder to the next.
- Called Parallel Adder because inputs are presented simultaneously (in parallel). Also called Ripple-Carry Adder.

16-Bit Parallel Adder

- Larger parallel adders can be built from smaller ones.
- Example: A 16-bit parallel adder can be constructed from four 4-bit parallel adders:

