Canonical & Standard Forms

CSIM601251 Instructor: Tim Dosen DDAK Slide By : Erdefi Rakun Fasilkom UI

Outline

- Minterms and Maxterms
- Relationship between Minterms and Maxterms: The Cannonical forms
- Conversion into Cannonical Sum-of-Minterm (SOM) or Product-of-Maxterm (POM) Representations
- Standard Form Sum-of-Products (SOP) and Productof-Sum (POS)

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Minterms and Maxterms (1/2)

• A minterm of *n* variables is a product term that contains *n* literals from all the variables.

Example: On 2 variables x and y, the minterms are:

 $x' \cdot y'$, $x' \cdot y$, $x \cdot y'$ and $x \cdot y$

• A maxterm of *n* variables is a <u>sum term</u> that contains *n* literals from all the variables.

Example: On 2 variables x and y, the maxterms are:

x'+y', x'+y, x+y' and x+y

• In general, with *n* variables we have 2^{*n*} minterms and 2^{*n*} maxterms.

Minterms and Maxterms (2/2)

• The minterms and maxterms on 2 variables are denoted by m0 to m3 and M0 to M3 respectively.

		Minterms		Maxterms		
x	x y Term		Notation	Term	Notation	
0	0	x'·y'	m0	x+y	M0	
0	1	x'·y	m1	x+y'	M1	
1	0	x·y'	m2	x'+y	M2	
1	1	х•у	m3	x'+y'	M3	

- Each minterm is the complement of the corresponding maxterm
 - Example: $m2 = x \cdot y'$

 $m2' = (x \cdot y')' = x' + (y')' = x' + y = M2$

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c}), (a + b + c)$
 - Terms: (b + a + c), $a\overline{c}b$, and (c + b + a) are NOT in standard order.
 - Minterms: $a\overline{b}c, abc, a\overline{b}\overline{c}$
 - Terms: (a + c), $\overline{b}c$, and $(\overline{a} + b)$ do not contain all variables

Purpose of the Index

- The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.
- For Minterms:
 - "1" means the variable is "Not Complemented" and
 - "0" means the variable is "Complemented".
- For Maxterms:
 - "0" means the variable is "Not Complemented" and
 - "1" means the variable is "Complemented".

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for <u>minterm 0</u> $(\overline{X}, \overline{Y}, \overline{Z})$ and no variables are complemented for <u>Maxterm</u> 0(X, Y, Z).
 - Minterm 0, called m_0 is \overline{X} . \overline{Y} . \overline{Z}
 - Maxterm 0, called M_0 is (X + Y + Z)
 - Minterm 6?
 - Maxterm 6?

Index Examples – Four Variables

Index Binary Minterm Maxterm

i	Pattern	m_i	M_i
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\overline{c}+\overline{d}$
5	0101	abcd	$a + \overline{b} + c + \overline{d}$
7	0111	?	$a + \overline{b} + \overline{c} + \overline{d}$
10	1010	abcd	$\overline{a} + b + \overline{c} + d$
13	1101	abīd	?
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$

Outline

- Minterms and Maxterms
- Relationship between Minterms and Maxterms: The Cannonical forms
- Conversion into Cannonical Sum-of-Minterm (SOM) or Product-of-Maxterm (POM) Representations
- Standard Form Sum-of-Products (SOP) and Productof-Sum (POS)

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x. y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x}. \overline{y}$
- Two-variable example: $M_2 = \overline{x} + y$ and $m_2 = x$. \overline{y} Thus M₂ is the complement of m₂ and vice-versa.
- Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables
- giving:

 $M_i = \overline{m_i}$ and $m_i = \overline{M_i}$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of Maxterms of 2 variables
 Minterms of 2 variables

x y	m_0	m_1	m ₂	m ₃
00	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

x y	\mathbf{M}_{0}	M ₁	M ₂	M ₃
00	0	1	1	1
01	1	0	1	1
10	1	1	0	1
11	1	1	1	0

• Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Observations

- In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (a minimum of 1s). All other entries are 0.
 - Each $\max_{n \to \infty}$ term has one and only one 0 present in the 2^n terms All other entries are 1 (a $\max_{n \to \infty}$ imum of 1s).
- We can implement any function by "**OR**ing" the minterms corresponding to "1" entries in the function table. These are called the <u>minterms of the function</u>.
- We can implement any function by "**AND**ing" the maxterms corresponding to "0" entries in the function table. These are called the <u>maxterms of the function</u>.
- This gives us two <u>canonical forms</u>:
 - <u>Sum of Minterms (SOM)</u>
 - Product of Maxterms (POM)

for stating any Boolean function.

Minterm Function Example

• Example: Find $F_1 = m_1 + m_4 + m_7$

$F1 = \overline{x} \overline{y} z + x \overline{y} \overline{z} + x y z$							
x y z	index	m1	╋	m4	+	m7	= F1
000	0	0	Ŧ	0	Ŧ	0	= 0
001	1	1	Ŧ	0	+	0	= 1
010	2	0	╋	0	≁	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

Maxterm Function Example

• Example: Implement F1 in maxterms: $F_1 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$ $F_1 = (\mathbf{x} + \mathbf{y} + \mathbf{z}) \cdot (\mathbf{x} + \overline{\mathbf{y}} + \mathbf{z}) \cdot (\mathbf{x} + \overline{\mathbf{y}} + \overline{\mathbf{z}})$ $(\overline{\mathbf{x}} + \mathbf{y} + \overline{\mathbf{z}}) \cdot (\overline{\mathbf{x}} + \overline{\mathbf{y}} + \mathbf{z})$ $\mathbf{x} \mathbf{y} \mathbf{z} \mid \mathbf{i} \mid \mathbf{M}_0 \cdot \mathbf{M}_2 \cdot \mathbf{M}_3 \cdot \mathbf{M}_5 \cdot \mathbf{M}_6 = \mathbf{F1}$ $000 \mid 0 \mid 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$ $001 | 1 | 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$ $010 | 2 | 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0$ $011 | 3 | 1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 = 0$ $4 | 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$ 100 $101 \mid 5 \mid 1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 = 0$ $6 \mid 1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 = 0$ 110 $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$ 7 111

Maxterm Function Example

- $F(A, B, C, D) = M_{3} \times M_{8} \times M_{11} \times M_{14}$
- F(A, B, C, D) =

Outline

- Minterms and Maxterms
- Relationship between Minterms and Maxterms: The Cannonical forms
- Conversion into Cannonical Sum-of-Minterm (SOM) or Product-of-Maxterm (POM) Representations
- Standard Form Sum-of-Products (SOP) and Productof-Sum (POS)

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Canonical Sum of Minterms

- Any Boolean function can be expressed as a <u>Sum of Minterms</u>.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term ($\mathbf{v} + \overline{\mathbf{v}}$).
- Example: Implement $\mathbf{f} = \mathbf{x} + \mathbf{\bar{x}} \ \mathbf{\bar{y}}$ as a sum of minterms.

First expand terms: $\mathbf{f} = \mathbf{x}(\mathbf{y} + \overline{\mathbf{y}}) + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Then distribute terms: $\mathbf{f} = \mathbf{x}\mathbf{y} + \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Express as sum of minterms: $\mathbf{f} = \mathbf{m}_3 + \mathbf{m}_2 + \mathbf{m}_0$

Another SOM Example

- Example: $\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}} \mathbf{C}$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand SOM Form

- From the previous example, we started with:
 F = A + B C
- We ended up with:

 $F = m_1 + m_4 + m_5 + m_6 + m_7$

- This can be denoted in the formal shorthand: $F(A,B,C) = \Sigma_m(1,4,5,6,7)$
- Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product</u> <u>of Maxterms (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law , "ORing" terms missing variable v with a term equal to and then applying the distributive law again. V×V
- Example: Convert to product of maxterms:

$$f(x, y, z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \times (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z_{x}\overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

• Convert to Product of Maxterms:

$$f(A,B,C) = A\overline{C} + BC + \overline{A}\overline{B}$$

• Use $x + \underline{y} = (x+y) \cdot (x+z)$ with $\mathbf{x} = (A\overline{C} + BC)$, $y = \overline{A}$, and $\mathbf{z} = \overline{B}$ to get:

$$f = (A\overline{C} + BC + \overline{A})(A\overline{C} + BC + \overline{B})$$

• Then use
$$\mathbf{x} + \overline{\mathbf{x}} \mathbf{y} = \mathbf{x} + \mathbf{y}$$
 to get:

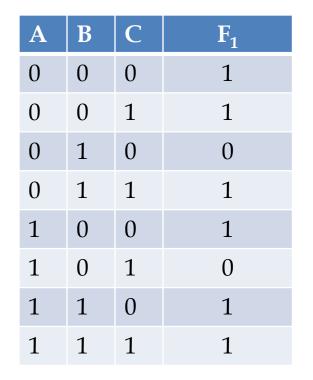
$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

and a second time to get:

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$
 to give $f = M_5 \cdot M_2$

Another POM Example

Convert to Product of Maxterms: $F_1(A,B,C) = A C' + B C + A'B'$



F1 = M2 • M5
=
$$(A + B' + C) • (A' + B + C')$$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given

 $F(x, y, z) = \sum_{m} (1, 3, 5, 7)$ $\overline{F}(x, y, z) = \sum_{m} (0, 2, 4, 6)$ $\overline{F}(x, y, z) = \prod_{M} (1, 3, 5, 7)$

Conversion Between Forms

- To convert between sum-of-minterms and product-ofmaxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$
- Form the Complement:

 $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$ $\overline{F}(x, y, z) = \sum_m(0, 2, 4, 6)$

• Then use the other form with the same indices – this forms the complement again, giving the other form of the original function: $F(x, y, z) = \prod_M (0, 2, 4, 6)$

Outline

- Minterms and Maxterms
- Relationship between Minterms and Maxterms: The Cannonical forms
- Conversion into Cannonical Sum-of-Minterm (SOM) or Product-of-Maxterm (POM) Representations
- Standard Form Sum-of-Products (SOP) and Productof-Sum (POS)

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Standard Forms (1/2)

- Certain types of Boolean expressions lead to circuits that are desirable from implementation viewpoint.
- Two standard forms:
 - Sum-of-Products
 - Product-of-Sums
- Literals
 - A Boolean variable on its own or in its complemented form
 - Examples: x, x', y, y'
- Product term
 - A single literal or a logical product (AND) of several literals
 - Examples: $x, x \cdot y \cdot z', A' \cdot B, A \cdot B, d \cdot g' \cdot v \cdot w$

Standard Forms (2/2)

- Sum term
 - A single literal or a logical sum (OR) of several literals
 - Examples: x, x+y+z', A'+B, A+B, c+d+h'+j
- Sum-of-Products (SOP) expression
 - A product term or a logical sum (OR) of several product terms
 - Examples: $x, x + y \cdot z', x \cdot y' + x' \cdot y \cdot z, A \cdot B + A' \cdot B', A + B' \cdot C + A \cdot C' + C \cdot D$
- Product-of-Sums (POS) expression
 - A sum term or a logical product (AND) of several sum terms
 - Examples: x, $x \cdot (y+z')$, $(x+y') \cdot (x'+y+z)$, (A+B) $\cdot (A'+B')$, (A+B+C) $\cdot D' \cdot (B'+D+E')$
- Every Boolean expression can be expressed in SOP or POS.

• Put the right ticks in the following table.

Expression	SOP?	POS?
$X' \cdot Y + X \cdot Y' + X \cdot Y \cdot Z$		
$(X+Y')\cdot(X'+Y)\cdot(X'+Z')$		
X' + Y + Z		
$X \cdot (W' + Y \cdot Z)$		
X·Y·Z'		
$W \cdot X' \cdot Y + V \cdot (X \cdot Z + W')$		

Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^{*n*} inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

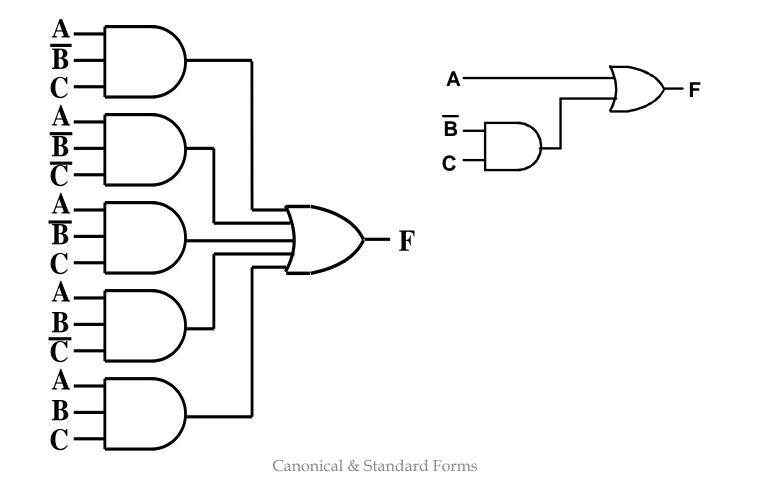
- A Simplification Example:
- F(A,B,C) = Σm(1,4,5,6,7)
 Writing the minterm expression:
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A \overline{B} \overline{C} + A \overline{B} \overline{C}$
- Simplifying:

F =

• Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

• The two implementations for F are shown below – it is quite apparent which is simpler!



SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.