Boolean Algebra

CSIM601251 Instructor: Tim Dosen DDAK Slide By : Erdefi Rakun Fasilkom UI

- Introduction
- Laws and basic theorems
- Proofing a theorem

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Digital Circuits

Advantages of digital circuits over analog circuits

- More reliable (simpler circuits, less noise-prone)
- Specified accuracy (determinable)
- <u>Binary variables</u> take on one of two values.
- <u>Logical operators</u> operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- <u>Logic gates</u> implement logic functions.

Boolean Algebra

- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Boolean Algebra

• Boolean values:

– True (1)

- False (0)
- Connectives
 - Conjunction (AND)
 - A B; A ^ B
 - Disjunction (OR)
 - A + B; A v B
 - Negation (NOT)
 - Ā ; ¬A; A'

Truth tables

А	В	A • B
0	0	0
0	1	0
1	0	0
1	1	1

А	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Logic gates

Notation Examples

• Examples:

 $Y = A \times B$ is read "Y is equal to A AND B." z = x + y is read "z is equal to x OR y." $X = \overline{A}$ is read "X is equal to NOT A."

• Note: The statement:

1 + 1 = 2 (read "one <u>plus</u> one equals two") is not the same as 1 + 1 = 1 (read "1 or 1 equals 1").

Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is <u>switch closed</u>
 - logic 0 is <u>switch open</u>
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.

Switches in parallel => OR

Switches in series => AND

that: Normally-closed switch => NOT

• logic 1 is <u>switch open</u>

– NOT uses a switch such

• logic 0 is <u>switch closed</u>

Logic Function Implementation (Continued)

• Example: Logic Using Switches

- Light is on (L = 1) for L(A, B, C, D) = ? and off (L = 0), otherwise.
- Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Diagrams and Expressions

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

- Introduction
- Laws and basic theorems
- Proofing a theorem

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Laws of Boolean Algebra

• Identity laws

A + 0 = 0 + A = A; $A \cdot 1 = 1 \cdot A = A$

- Inverse/complement laws A + A' = 1; $A \cdot A' = 0$
- Commutative laws
 - $A + B = B + A; \qquad A \cdot B = B \cdot A$
- Associative laws
 - A + (B + C) = (A + B) + C; $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- Distributive laws

 $A \cdot (B + C) = (A \cdot B) + (A \cdot C);$ $A + (B \cdot C) = (A + B) \cdot (A + C)$

Precedence of Operators

- Precedence from highest to lowest
 - Not
 - And
 - Or
- Examples:
 - $A \cdot B + C = (A \cdot B) + C$
 - X + Y' = X + (Y')
 - $P + Q' \cdot R = P + ((Q') \cdot R)$
- Use parenthesis to overwrite precedence. Examples:
 - $A \cdot (B + C)$
 - $(P + Q)' \cdot R$

Duality

 If the AND/OR operators and identity elements 0/1 in a Boolean equation are interchanged, it remains valid Example:

The dual equation of $a+(b\cdot c)=(a+b)\cdot(a+c)$ is $a\cdot(b+c)=(a\cdot b)+(a\cdot c)$

• Duality gives free theorems – "two for the price of one". You prove one theorem and the other comes for free!

Examples:

If $(x+y+z)' = x' \cdot y' \cdot z'$ is valid, then its dual is also valid: $(x \cdot y \cdot z)' = x'+y'+z'$

If x+1 = 1 is valid, then its dual is also valid: $x \cdot 0 = 0$

Basic Theorems (1/2)

- 1. Idempotency X + X = X; $X \cdot X = X$
- 2. Zero and One elements X + 1 = 1; $X \cdot 0 = 0$
- 3. Involution (X')' = X
- 4. Absorption $X + X \cdot Y = X$; $X \cdot (X + Y) = X$
- 5. Absorption (variant) $X + X' \cdot Y = X + Y;$ $X \cdot (X' + Y) = X \cdot Y$

Basic Theorems (2/2)

6. DeMorgan's

 $(X + Y)' = X' \cdot Y';$ $(X \cdot Y)' = X' + Y'$

DeMorgan's Theorem can be generalized to more than two variables, example: $(A + B + ... + Z)' = A' \cdot B' \cdot ... \cdot Z'$

7. Consensus

 $X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$ $(X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z)$

Identity Name	AND Form	OR Form
Identity Law	1X = X	0 + X = X
Null (or Dominance) Law	0X = 0	1 + x = 1
Idempotent Law	XX = X	X + X = X
Inverse Law	$X\overline{X} = 0$	$x + \overline{x} = 1$
Commutative Law	XY = YX	X+Y = Y+X
Associative Law	(xy)z = x(yz)	(x+y)+z = x+(y+z)
Distributive Law	x+yz = (x+y)(x+z)	x(y+z) = xy+xz
Absorption Law	x(x+y) = x	X + XY = X
DeMorgan's Law	(XY) = X + Y	(X+Y) = XY
Double Complement Law	$\overline{X} =$	X

TABLE 3.5 Basic Identities of Boolean Algebra

- Introduction
- Laws and basic theorems
- Proofing a theorem

Note: Portion of this material are taken from Aaron Tan's slide and other portions of this material © 2008 by Pearson Education,Inc

Proving a Theorem

• Theorems can be proved using truth table, or by algebraic manipulation using other theorems/laws.

Example: Prove absorption theorem $X + X \cdot Y = X$

 $X + X \cdot Y = X \cdot 1 + X \cdot Y$ (by identity)

- = $X \cdot (1+Y)$ (by distributivity)
- = $X \cdot (Y+1)$ (by commutativity)
- = $X \cdot 1$ (by one element)
- = X (by identity)

By duality, we have also proved $X \cdot (X+Y) = X$

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Truth Table

- Provide a listing of every possible combination of inputs and its corresponding outputs.
 - Inputs are usually listed in binary sequence.
- Example
 - Truth table with 3 inputs and 2 outputs

x	у	Z	y + z	x • (y + z)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Proof Using Truth Table

- Prove: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 - Construct truth table for LHS and RHS

x	у	Z	y + z	x • (y + z)	x • y	x ● z	$(\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

• Check that column for LHS = column for RHS

Example 2: Boolean Algebraic Proofs

- $AB + \overline{AC} + BC = AB + \overline{AC}$ (Consensus Theorem) Proof Steps Justification (identity or theorem) $AB + \overline{AC} + BC$ $= AB + \overline{AC} + 1 \cdot BC$? $= AB + \overline{AC} + (A + \overline{A}) \cdot BC$?
 - =

Example 3: Boolean Algebraic Proofs

•
$$(\overline{X + Y})Z + X\overline{Y} = \overline{Y}(X + Z)$$

Proof Steps Justification (identity or theorem)
 $(\overline{X + Y})Z + X\overline{Y}$

Boolean Functions

• Examples of Boolean functions (logic equations):

 $F1(x,y,z) = x \cdot y \cdot z'$ $F2(x,y,z) = x + y' \cdot z$ $F3(x,y,z) = x' \cdot y' \cdot z + x' \cdot y \cdot z + x \cdot y'$ $F4(x,y,z) = x \cdot y' + x' \cdot z$

x	у	Z	F1	F2	F3	F4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Complement

- Given a Boolean function F, the complement of F, denoted as F', is obtained by interchanging 1 with 0 in the function's output values.
- Example: $F1 = x \cdot y \cdot z'$
- What is F1'?

x	у	Z	F1	F1'
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	

Complementing Functions

• Use DeMorgan's Theorem to complement a function:

Interchange AND and OR operators
 Complement each constant value and literal

- Example: Complement F = $\overline{x}y\overline{z} + x\overline{y}\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- Example: Complement $G = (\overline{a} + bc)\overline{d} + e$ $\overline{G} =$

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):
- $AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$ = AB + ABCD + $\overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$ = AB + AB(CD) + $\overline{A}C(D + \overline{D}) + \overline{A}BD$ = AB + $\overline{A}C + \overline{A}BD = B(A + AD) + \overline{A}C$ = B (A + D) + $\overline{A}C$ 5 literals