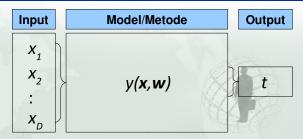
Model Linear untuk Regresi

Dr. rer. nat. Hendri Murfi


Intelligent Data Analysis (IDA) Group

Departemen Matematika, Universitas Indonesia – Depok 16424

Telp. +62-21-7862719/7863439, Fax. +62-21-7863439, Email. hendri@ui.ac.id

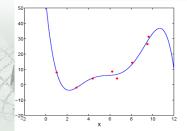
Machine Learning

Tahapan Umum Proses

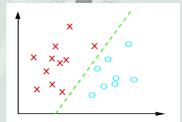
Diberikan data pelatihan (training data), yaitu \mathbf{x}_i dan/atau \mathbf{t}_i , i = 1 sd N

- Preprocessing: pemilihan/ekstraksi fitur dari data, misal $\mathbf{x}_i = (x_1, x_2, ..., x_p)^T$
- Learning: penentuan parameter metode, misal w, berdasarkan data pelatihan
- Testing: pengujian metode dengan data baru. Data penguji (testing data) tersebut harus dilakukan preprocessing yang sama dengan data pembelajaran sebelum dieksekusi oleh metode

Learning


Diberikan data pelatihan \mathbf{x}_i , i = 1 sd N, dan/atau \mathbf{t}_i , i = 1 as N

- Supervised Learning. Data pelatihan disertai target, yaitu {x_i, t_i}, i = 1 sd
 N. Tujuan pembelajaran adalah membangun model yang dapat menghasilkan output yang benar untuk suatu data input, misal untuk regresi, klasifikasian, regresi ordinal, ranking, dll
- Unsupervised Learning. Data pelatihan tidak disertai target, yaitu x_i, i = 1 sd N. Tujuan pembelajaran adalah membagun model yang dapat menemukan komponen/variabel/fitur tersembunyi pada data pelatihan, yang dapat digunakan untuk: pengelompokan (clustering), reduksi dimensi (dimension reduction), rekomendasi, dll


3

Supervised Learning

- Regresi
 - Nilai output t_i bernilai kontinu (riil)
 - Bertujuan memprediksi output dengan akurat untuk data baru

- Klasifikasi
 - Nilai output t_i bernilai diskrit (kelas)
 - Bertujuan mengklasifikasi data baru dengan akurat

Regresi

Model Linear

 Model linear adalah kombinasi linear dari fungsi nonlinear dari variabel input (fungsi basis):

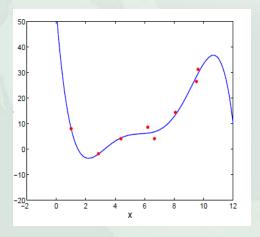
$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} oldsymbol{\phi}(\mathbf{x})$$

dimana $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_D)^{\mathsf{T}}$ adalah variabel input, dan $\mathbf{w} = (\mathbf{w}_{0_i} \mathbf{w}_{1_i} ..., \mathbf{w}_{M-1})^{\mathsf{T}}$ adalah parameter, $\phi(\mathbf{x}) = (\phi_0(\mathbf{x})_i \phi_1(\mathbf{x})_i ..., \phi_{M-1}(\mathbf{x}))^{\mathsf{T}}$ adalah vektor fungsi basis $\phi_i(\mathbf{x})$, M adalah jumlah total parameter dari model

- Biasanya, $\phi_0(\mathbf{x}) = 1$, sehingga \mathbf{w}_0 berfungsi sebagai bias
- Ada banyak pilihan yang mungkin untuk fungsi basis $\phi(\mathbf{x})$, misal fungsi linear, fungsi polinomial, fungsi gaussian, fungsi sigmoidal, dll

5

Regresi Linear Sederhana

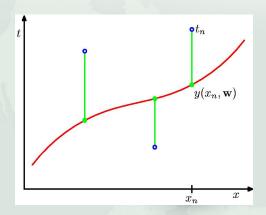

Fungsi Basis Polinomial

Regresi linear sederhana (simple linear regression) adalah masalah regresi dengan variabel input x berdimensi satu. Misal kita menggunakan polinomial φ_j(x) = x^j sebagai fungsi basis, dan M = M-1, maka bentuk umum dari regresi linear sederhana tersebut adalah:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Regresi Linear Sederhana

Polynomial Curve Fitting


Diberikan data pelatihan $\{x, t\}$, i = 1 sd N

- Masalah: bagaimana mendapatkan kurva polinomial yang cocok untuk data pelatihan tersebut
- Solusi: mencari kurva polinomial yang memiliki kesalahan (error) terkecil pada data pelatihan tersebut
- Persoalan ini sering juga disebut sebagai polynomial curve fitting

7

Regresi Linear Sederhana

Fungsi Error

 Salah satu fungsi error yang sering digunakan adalah fungsi sum-of-squares error sbb:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

 Salah satu metode yang digunakan untuk mencari nilai w yang meminimumkan fungsi error adalah metode kuadrat terkecil (least squares)

Regresi Linear Sederhana

Metode Kuadrat Terkecil

Setelah penurunan $E(\mathbf{w})$ terhadap \mathbf{w} , maka persoalan penentuan nilai parameter w menjadi persoalan penentuan solusi sistem persamaan linear:

$$Aw = t$$

dimana

$$A = \begin{bmatrix} \sum_{n=1}^{N} 1 & \sum_{n=1}^{N} x_n & \cdots & \sum_{n=1}^{N} x_n^M \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} x_n^2 & \cdots & \sum_{n=1}^{N} x_n^{M+1} \\ \vdots & \vdots & \cdots & \vdots \\ \sum_{n=1}^{N} x_n^M & \sum_{n=1}^{N} x_n^{M+1} & \cdots & \sum_{n=1}^{N} x_n^{2M} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_M \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} \sum_{n=1}^{N} t_n \\ \sum_{n=1}^{N} x_n t_n \\ \vdots \\ \sum_{n=1}^{N} x_n^M t_n \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_M \end{bmatrix}$$

$$\mathbf{t} = \begin{bmatrix} \sum_{n=1}^{N} t_n \\ \sum_{n=1}^{N} x_n t_n \\ \vdots \\ \sum_{n=1}^{N} x_n^M t_n \end{bmatrix}$$

Regresi Linear Sederhana

Contoh Kasus

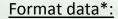
Seorang ahli biologi telah melakukan eksperimen sebanyak 7 kali untuk melihat pertumbuhan bakteri berdasarkan kadar Nitrogen, dan diperoleh kondisi sbb:

Kadar Nitrogen (gram)	3	4	6	7	8	9
Pertumbuhan Bakteri	1	3	4	6	8	8

Tentukan regresi linear polinomial berorde 1 berdasarkan data tsb. Selanjutnya, prediksi pertumbuhan bakteri jika diberikan Nitrogen sebanyak 5 gram.

Solusi:

Dari persoalan diatas diketahui x = kadar nitrogen, t = pertumbuhan bakteri, N=6 dan M=1, sehingga:

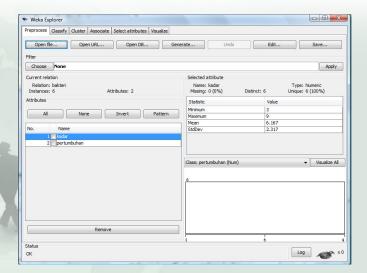

$$A = \begin{bmatrix} 6 & 37 \\ 37 & 255 \end{bmatrix}, \quad t = \begin{bmatrix} 30 \\ 217 \end{bmatrix}, \quad dan \ w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} adalah \ solusi \ SPLAw = t \ , \ yaitu \ w = \begin{bmatrix} -2.35 \\ 1.19 \end{bmatrix}$$

dan model linear yang dihasilkan adalah y(x) = -2.35 + 1.19x. Sementara prediksi pertumbuhan bakteri untuk 5 gram Nitrogen adalah y(5) = -2.35 + 1.19*5 = 3.6

Regresi Linear Sederhana

Contoh Kasus: Menggunakan Weka

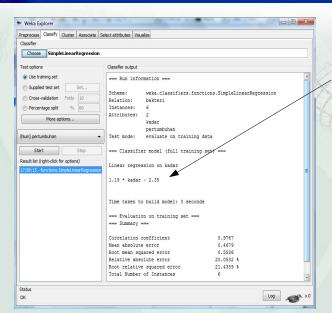
@RELATION bakteri


@ATTRIBUTE kadar NUMERIC
@ATTRIBUTE pertumbuhan NUMERIC

@DATA 3,1 4,3

7,6

8,8


*Disimpan dalam file dengan ekstensi arff (misal: bakteri.arff)

11

Regresi Linear Sederhana

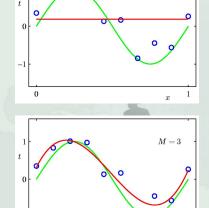
Contoh Kasus: Menggunakan Weka

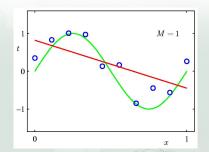
Model hasil:

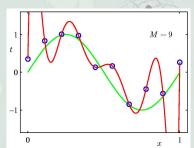
y(x) = -2.35 + 1.19x

Pemilihan Model

 Karakteristik model regresi linear polinomial ditentukan oleh nilai M (orde polinomial atau jumlah parameter).
 Pemilihan nilai M yang optimal dikenal juga dengan istilah pemilihan model (model selection)

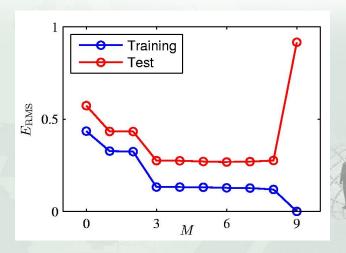

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$


13

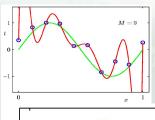

Pemilihan Model

Under-fitting dan Over-fitting

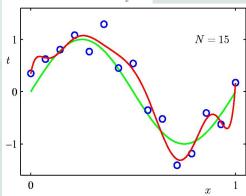
M = 0

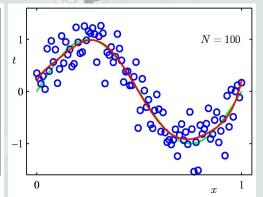


Under-fitting dan Over-fitting



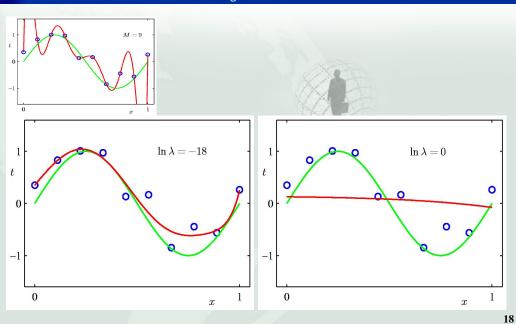
Root-Mean-Square (RMS) Error:


$$E_{
m RMS} = \sqrt{2E({f w}^{\star})/N}$$


15

Parameter vs Data

 Jumlah data pembelajaran seharusnya tidak lebih sedikit dari jumlah parameter


Regularisasi

- Pada aplikasi praktis, kita sering menemukan kondisi dimana untuk persoalan yang kompleks ketersediaan data pembelajaran terbatas.
- Salah satu teknik yang digunakan untuk mengkontrol fenomena over-fitting adalah regularisasi (regularization), yaitu dengan cara menambah finalti ke fungsi error.

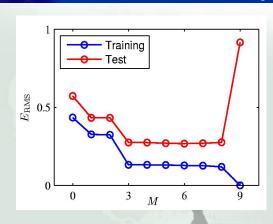
	M=0	M = 1	M=3	M = 9	, N
w_0^\star	0.19	0.82	0.31	0.35	\simeq 1 \sim 2 \sim 32 \wedge 10 \sim
w_1^\star		-1.27	7.99	232.37	$E(\mathbf{w}) = \frac{1}{2} \sum \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{2}{9} \ \mathbf{w}\ ^2$
$oldsymbol{w_2^{\star}}$			-25.43	-5321.83	2 n=1
$w_3^{ar{\star}}$			17.37	48568.31	
w_4^\star				-231639.30	
w_5^{\star}				640042.26	
w_6^*				-1061800.52	
w_7^\star				1042400.18	
w_{8}^{\star}				-557682.99	
w_9^\star				125201.43	17

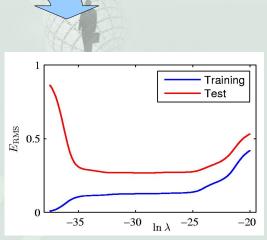
Regularisasi

Penghalusan Kurva

Regularisasi

Pengecilan Nilai Bobot


1	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^{\star}	1			-1061800.52
w_7^{\star}	1/2		1	1042400.18
w_8^\star				-557682.99
w_9^\star	1			125201.43


	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

19

Regularisasi

Mengatasi over-fitting

Regresi Linear Umum

· Fungsi sum square error adalah

$$E_D(\mathbf{w}) = rac{1}{2} \sum_{n=1}^N \{t_n - \mathbf{w}^{\mathrm{T}} oldsymbol{\phi}(\mathbf{x}_n)\}^2$$

nilai bobot w yang meminimum fungsi error adalah

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

dimana

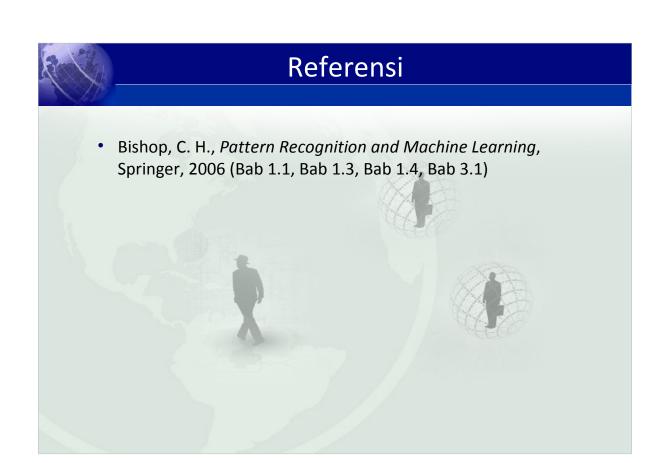
$$oldsymbol{\Phi} = \left(egin{array}{cccc} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \ dots & dots & \ddots & dots \ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{array}
ight).$$

21

Regresi Linear Umum

Regularisasi

· Fungsi regularized sum square error adalah


$$\frac{1}{2}\sum_{n=1}^{N}\{t_{n}-\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n})\}^{2}+\frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

nilai bobot w yang meminimum fungsi erroe adalah

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

dimana

$$oldsymbol{\Phi} = \left(egin{array}{cccc} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \ dots & dots & \ddots & dots \ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{array}
ight).$$

