- Fatih Ismail Alaydrus (1806146953)
- Igrar Agalosi Nureyza (1806204902)
- Setyawan Pratama (1806191591)

—

TA : FAA
Lecturer :dr. Fariz Darari

UNIVERSITAS

INDONESIA

FAKULTAS

I
JRVA'HAS'A BETTER WAY T0 MAKE CONTRACT BETTER ESEEE
THROUGH -ABSTRACT CLASSES AND INTERFACES

“Abstract class and interfaces are two very vital
pivots in the Object Oriented Programming concept.”
-Lincoln W. Daniel

Why Abstract Classes and Interface
important to be learn?

A regular class defines the fields, implements fully
functioning methods and can be instantiated; such a
class is referred to as a concrete class. That is the
vast majority of classes you will write and use in your
programming career. Abstract classes and interfaces
cannot be instantiated, but they, too, define fields
and methods—although they may not implement
methods. They are best for forming a contract
between a class, its subclasses, and users of its

An interface is a bit different than anything we've
seen thus far. A Java interface is more like an
abstract class than a regular class. An interface
can only contain method signatures and static
final fields. An interface is merely a contract
between the interface and classes that
subclasses. implement it. Like with abstract classes, classes
that implement an interface must implement its
methods’ bodies to provide functionality.
S r Interfaces are best for creating a contract that I
3 4 will ensure that all classes that implement it |
" ’ Elﬂss s behave similarly by abiding by the contract. E
An abstract class is much like a regular class in
that it can have fields and methods that may or
may not have bodies.

-
s

public abstract class Fighter{ class Archer extends Fighter implements BowArrow{ In that code, you can
public String name; public Archer(String name, double health){
public double health; super(name, health); see thCIt we hGVG our

T . ot . Fighter class and its
public Fighter(String name, double health){ public void shotArrow(Fighter target){
this.name = name; target.health -= 10; attack() and defend()
this.health = health; } .
} public attack(Fighter| target){ Instance met:hOds are
public abstract void attack(Fighter target); this.target.health -='5; abstract. This is because
public abstract void defend(); } they are CI” functions thCIt
i } s _ should be unique to each
interface BowArrow{ class Swordsman extends Fighter implements Sword{ .
class that implements

public void shotArrow(Fighter target);
them; Archer won't attack

¥ public void swingSword(FIghter target){
interface Sword{ target.health -= 50;
public void swingSword(Fighter target); } ‘the same WC]y as

¥ } :
interface Magic{ class ‘Wizard extends Fighter implements Magic{ SWOfdsmGn Gnd WIZCIrd,

public void castSpell(Fighter target); ol SO they shou|d imp|ement
public void castSpell(Fighter target){

this.target.health = 0; \ the attack() method

s ¥ s differently.

https://medium.com/modernnerd-code/java-for-humans-abstract-classes-interfaces-aa4b2ee37418
https://strategywiki.org/wiki/Ragnarok_Online/Jobs
http://ocw.ui.ac.id/course/view.php?id=47

