Let’s take factorial

as an examp[e: Function Call the function

with the next
parameter

Actual program. Contains
static int factorial (int n){ the base case and

if (n == 1) recursion case.
return 1;

LMy else \ \ .
KOMPUTER return factorial (int n) Recursion
(n * factorial(n-1));} cyc l.e

. Check if
Recursion

Recursion is a basic programming technique you can use in Finalization Base Case Recursion Case
Java' in which a method calls itself to solve some prOblem' A Return base case, Required so that the Cases that calls the

method that uses this technique is recursive. finishing the program won't loop forever function itself in order to
calculation. finish the calculation

if (n == 1) else

Many programming problems can be solved only by recur- return 1; 5 uen
sion, and some problems that can be solved by other tech- (n * factorial(n-1));
niques are better solved by recursion.

. A Recursion actually refers to StackOverFlowError
Recu rsive I‘l'e rai'|ve the phenomenon of partially,
SEE— _— self-repeating, which exists It's one of the most common
extensively in natural world. runtime errors we can
O Pros: © Pros: encounter. Happens when we
The Ancient Greek philosopher don’t put base case in our
- Reduce unnecessary calling - Easier to understand Democritus proposed his recursion function, resulting
of function. - Nested loops atomic theory, which claims in an infinite loop. When a
- Recursion adds clarity and - Smaller potential to overflow that matters can be repeatedly method is called, a new stack
reduces the time needed to cut into parts until they frame gets created on the
write and debug code. @ Cons: become atoms, which means call stack.
“uncutable”.
@ Cons: - Can’t use the function itself If JVM encounters a situation
as the base case. where there is no space for a
- Difficulty to trace and debug - Difficulty in writing code if new stack frame to be creat-
- Uses more memory and theres multiple cases. ed, it will throw a StackOver-
processing power flowError.

CONMPARISON

- Bigger potential to overflow

source: https://github.com/FarizioKautsar/RecursionPosterSource/blob/master/Sources



