
public class PosterUwU {
 private String pictureUwu;
 private int members;

 public PosterUwU(String pictureUwu, int members) {
 this.pictureUwu = pictureUwu;
 this.members = members;
 }

 public String getPicture() {
 return this.pictureUwu;
 }
 public void setPicture(String pictureUwu) {
 this.pictureUwu = pictureUwu;
 }
}

S I M P L E C O D E
ENCAPSULAT ION

Object Oriented can
help your life.

 How does it work?
Powered by :

Anatasya Dwijayanti Chang
Riana Hasna Muthiah
Shafira Ayu Maharani

Lecturer : Dr. Fariz Darari
TA : Jonathan Christian

public class CatHouse {
 public static void main(String[] args) {
 Cat cat1 = new Cat();
 cat1.name = "Milky";
 cat1.owner = "Steve";
 cat1.Id = 1833;

 Cat cat2 = new Cat();
 cat2.name = "Boo";
 cat2.owner = "Sarah";
 }
}
class Cat {
 String name;
 String owner;
 int Id;

 public Cat() {
 this.name = "Cat";
 }

 public void eat() {
 System.out.println("I'm Eating...");
 }
}

public class CatHouse {
 public static void main(String[] args) {
 Cat cat1 = new Cat();
 cat1.name = "Milky";
 cat1.owner = "Steve";
 cat1.Id = 1833;

 Cat cat2 = new Cat();
 cat2.name = "Boo";
 cat2.owner = "Sarah";
 }
}
class Cat {
 String name;
 String owner;
 int Id;

OBJECT ORIENTED DESIGN

A class should have one
 and only one reason to

change,
meaning that a class

should
have only one job

Single
Responsibility

Objects or entities
 should be open
 for extension,

but closed
for modification

Open Closed

Let q(x) be a
property
provable

 about objects
of x of type T.

Then q(y)
should be

provable for
objects

Liskov
Substitution

A client should
never be forced to

implement an
interface that it

doesn't be forced
to depend on

methods they do
not use

Interface
Segregation

Entities must depends on

abstractions not on
concretions.

It states that the high level
module must

 not depend on the low
level module,

 but they should depend
on abstractions

Dependency
 Inversion

Advantages of Encapsulation
Data Hiding Increased Flexibility Reusability Testing code

 is easy

public Cat() {
 this.name = "Cat";
 }
 public void setName(String name) {
 this.name = name;
 }
 public void setOwner(String owner) {
 this.owner = owner;
 }
 public void setId(int Id) {
 this.Id = Id;
 }
 public String getName() {
 return name;
 }
 public String getOwner() {
 return owner;
 }
 public int getId() {
 return Id;
 }
 public void eat() {
 System.out.println("I'm Eating...");
 }
}

It will not be visible to the
user that how the class
is storing values in the

variables

Can make the variables of the class
as read-only or write-only

depending on our requirement
Improves the re-usability

and easy to change
with new requirements. Encapsulated code is easy

to test for unit testing.

Setter & Getter

Recall that the data fields (instance variables)
of variable are private. We can access them

from within the Cat class, but if we try to
access them from another class, the compiler

generates an error.
This technique can be used to maintain the

confidentiality of personal data so that only a
few people can access the data

UML Class
Diagram

Access Modifier

Without
setter & getter With

setter &
getter

