public class PosterUwU {
private String pictureUwu;
private int members;

Object Oriented can
help your life.

this.pictureUwu = pictureUwu;
}
}

public PosterUwU(String pictureUwu, int members) {
this.pictureUwu = pictureUwu;
this.members = members;

}

public String getPicture() {

Powered by :
Anatasya Dwijayanti Chang
Riana Hasna Muthiah
Shafira Ayu Maharani

Lecturer : Dr. Fariz Darari
TA : Jonathan Christian

OBJECT ORIENTED DESIGN

Interface
Segregation

Liskov
Substitution

Dependency
Inversion

Responsibility

Open Closed

A client should

Let q(x) be a Entities must depends on

A class should have one Objects o entities property abstractions not on never be forced to

and only one reason to should be open provable concretions. implement an

change, ; . about objects It states that the high level interface that it
meaning that a class SIS GiF X @I R T module must doesn't be forced

hould but closed Then q(y) not depend on the low o d d

shou . for modification should be level module, 0 depend on

have only one job provable for but they should depend methods they do

on abstractions not use

objects

\ |
P

UML Class
Diagram

UML CLASS DIAGRAM

Setter & Getter

Recall that the data fields (instance variables)
of variable are private. We can access them
from within the Cat class, but if we try to
access them from another class, the compiler

Class Name
Data Fields

Cat

name: String

owner: Sfring

generates an error. id: int
This technique can be used to maintain the e Cat()
confidentiality of personal data so that only a Method eat()

few people can access the data

Access Modifier

ACCESS CLASS PACKAGE SUBCLASS WORLD
MODIFIERS

PUBLIC 4 4 v 4 o A
PROTECTED L 4 L 4 L4 X

DEFAULT v v X X

PRIVATE v X X X aa

Advantages of Encapsulation

Testing code

Data Hiding

Increased Flexibility| Reusability

4(?“//\ N is easy
oo 1~ . \Z

It will not be visible to the
user that how the class

Can make the variables of the class

Improves the re-usability

as read-only or write-only

depending on our requirement and easy to change

with new requirements.

is storing values in the

variables Encapsulated code is easy|

to test for unit testing.

</>7

o

bOwithout

setter & getter

public class CatHouse {
public static void main(String[] args) {
Cat catl = new Cat();
catl.name = "Milky";
catl.owner = "Steve";
catl.ld = 1833;

IT—T
With

setter &
getter

public class CatHouse {

public static void main(String[] args) {

Cat catl = new Cat();

catl.name = "Milky";

catl.owner = "Steve";

catl.ld = 1833;

public Cat() {

Cat cat2 = new Cat(); this.name = "Cat";

cat2.name = "Boo", }

Cat cat2 = new Cat();
cat2.owner = "Sarah"; public void setName(String name) {

cat2.name = "Boo";

cat2.owner = "Sarah"; } this.name = name;
} } }
} class Cat { public void setOwner(String owner) {
class Cat { String name; this.owner = owner;
String name; String owner; }
String owner; int Id; public void setld(int Id) {
int Id; this.ld = Id;

}
public String getName() {

O return name;

public String getOwner() {
return owner;

public Cat() {
this.name = "Cat";

}

public void eat() {

System.out.printin("I'm Eating..."); . }
} N " public int getld() {
} L A% return Id;
}

public void eat() {
System.out.printin("I'm Eating...");
}
}

O

FAKULTAS

ILMU
KOMPUTER




