

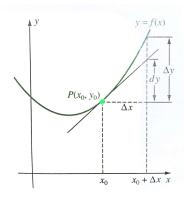
Bab 2. Turunan

2.9 Diferensial

Tim Dosen Kalkulus 1

Arman Haqqi Anna Hengki Tasman Ida Fithriani Siti Aminah Wed Giyarti

Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia



Sejauh ini, notasi turunan $\frac{dy}{dx}$ merupakan satu kesatuan, bukanlah suatu hasil bagi.

Saat ini kita akan meninjau konsep diferensial yang bisa memberikan interpretasi lain untuk notasi turunan $\frac{dy}{dx}$.

Misalkan y=f(x) adalah fungsi terturunkan dengan variabel bebas x.

 $\triangle x$: pertambahan dalam variabel bebas x.

dx: diferensial variabel bebas x (differential of the independent variable) dan $dx = \triangle x$.

 $\triangle y$: perubahan aktual variabel y ketika x berubah dari x menjadi $x+\triangle x$, yaitu $\triangle y=f(x+\triangle x)-f(x).$

dy: differential variabel bebas y (differential of the independent variable), didefinisikan sebagai dy = f'(x) dx.

Karena
$$dy = f'(x) dx$$
, maka $\frac{dy}{dx} = f'(x)$.

Jadi turunan dapat diinterpretasikan sebagai $\frac{\text{hasil bagi}}{dy}$ diferensial dx.

Contoh 1

Tentukanlah diferensial dy dari $y = x^4 - 3x^2 + 4$.

$$dy = f'(x) dx = (4 x^3 - 6 x) dx.$$

Contoh 2

Hitunglah diferensial dy dari $y=x^3$ ketika $x=\frac{1}{2}$ dan dx=1.

$$dy = f'(x) dx = 3x^2 dx$$
.
Ketika $x = \frac{1}{2}$ dan $dx = 1$, maka $dy = \frac{3}{4}$.

Derivative Rule

Differential Rule

$$1. \quad \frac{dk}{dx} = 0$$

$$2. \quad \frac{d(ku)}{dx} = k\frac{du}{dx}$$

$$3. \quad \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$4. \quad \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

5.
$$\frac{d(u/v)}{dx} = \frac{v(du/dx) - u(dv/dx)}{v^2}$$

$$6. \quad \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$

1.
$$dk = 0$$

$$2. \ d(ku) = k \, du$$

$$3. \ d(u+v) = du + dv$$

$$4. \quad d(uv) = u \, dv + v \, du$$

$$5. \ \ d\left(\frac{u}{v}\right) = \frac{v \, du - u \, dv}{v^2}$$

$$6. \ d(u^n) = nu^{n-1} du$$

Perbandingan aturan turunan dan aturan diferensial.

Latihan Mandiri .

- **1** Tentukanlah diferensial dy dari $y = (1 + \tan x)^3$.
- 2 Tentukanlah diferensial dy dari $y = (x^5 + \sqrt{2x})^3$.
- Misalkan $y = x^2 3$. Hitunglah △y dan dy ketika x = 2 dan $dx = △x = \frac{1}{2}$.

Pustaka

Varberg, D., Purcell, E., Rigdon, S., Calculus, 9th ed., Pearson, 2006.

Catatan

Beberapa gambar dalam materi ini diambil dari pustaka di atas.

VIDEO BANTUAN DANA MATA KULIAH MOOCs DPASDP UI 2020

Copyright © Universitas Indonesia 2020

Produksi Prodi S1 Matematika, Departemen Matematika, FMIPA UI

