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Evaluasi

* Seberapa prediktif model yang sudah terbentuk ? Dengan kata
lain berapa kapabilitas generalisasi dari model yang terbentuk?

* Akurasi pada data training bukan merupakan indikator kinerja
model untuk data di masa yang akan datang

* Jika kita memilikicukup banyak data, solusi sederhana yang
dapat digunakan adalah bagi data menjadi data training dan
data testing. Selanjutnya evaluasi akurasi pada data testing.

* Akan tetapi, data biasanya terbatas, sehingga diperlukan teknik-
teknik yang lebih tepat



AEIVEN

* Asumsi: baik data training dan data testing adalah sampel-
sample yang representatif untuk masalah yang dihadapi

* Data testing adalah data independen yang tidak terlibat dalam
pembentukan model

* Data training dan data testing boleh jadi memiliki karakteristik
yang berbeda

— Contoh: untuk mengestimasi kinerja suatu model dari kota A
pada data kota lain yang berbeda, maka uji model tersebut
pada data dari kota B

Evaluasi

* Setelah proses evaluasi selesai, semua data (training + testing)
digunakan untuk membangun model akhir

* Secara umum, semakin besar data training maka akan semakin
baik kinerja model

* Sementara itu, semakin besar data testing maka akan semakin
akurat estimasi kinerja

* Machine Learning diharapkan handal untuk data training yang
kecil



Isu-Isu Pada Evaluasi

Prosedur estimasi kinerja: holdout, cross-validation, bootstrap

Ukuran estimasi kinerja:

— Klasifikasi: success rate, cost-sensitive, ...

— Regresi: MSE, RMSE, MAE, RSE, RAE, ...

— Regresi Ordinal, Ranking, Estimasi Densitas, ...

Kehandalan estimasi kinerja: confidence interval

Perbandingan skema pembelajaran: t-test

Prosedur Estimasi Kinerja

Metode Holdout

Metode holdout membagi sejumlah data untuk testing dan
menggunakan sisinya untuk training

— Umumnya: sepertiga untuk testing, sisanya untuk training
Masalah: sample-sample tsb boleh jadi tidak representatif

— Contoh: suatu kelas bisa jadi tidak ada pada data testing
Solusi: menggunakan metode stratification

— Menjamin bahwa masing-masing kelas direpresentasikan
dengan proporsi hampir sama pada kedua bagian data



Prosedur Estimasi Kinerja

Metode Repeated Holdout

* Metode holdout dapat dibuat lebih handal dengan mengulang
proses untuk subsampel yang berbeda

— Pada setiap iterasi, suatu proporsi tertentu dipilih secara acak
untuk training

— Kinerja pada setiap iterasi dirata-rata untuk mendapatkan
estimasi kinerja total

* Metode ini disebut repeated holdout

* Masih tidak optimal: kemungkinan terjadi tumpang tindih pada
data testing pada masing-masing iterasi

Prosedur Estimasi Kinerja

K-Fold Cross-Validation

* Metode cross-validation akan menghindari tumpang tindih pada
data testing

— Tahap 1: bagi data menjadi k bagian dengan ukuran yang sama

— Tahap 2: gunakan masing-masing bagian untuk testing, sisanya
sebagai training

* Metode seperti ini dikenal sebagai k-fold cross validation

* Biasanya digunakan metode stratification sebelum proses cross-
validation dilaksanakan

* Estimasi tingkat kesuksesan dirata-rata untuk mendapatkan
estimasi total



Prosedur Estimasi Kinerja

10-Fold Cross-Validation

Metode standar untuk evaluasi adalah 10-fold cross-validation
Kenapa 10 ?

— Banyak hasil eksperiment menunjukan bahwa ini adalah pilihan
terbaik untuk mendapatkan estimasi yang akurat

— Ada juga beberapa bukti teoritis untuk ini
Proses stratification akan mereduksi variansi estimasi

5-fold atau 20-fold sering juga memberikan hasil yang hampir
sama

Prosedur Estimasi Kinerja

Leave-One-Out Cross-Validation

Leave-One -Out adalah bentuk khusus dari cross-validation,
yaitu jumlah fold sama dengan jumlah data training

Tidak ada proses acak dalam menentukan subsampel
Membutuhkan biaya komputasi yang sangat mahal

Diutamakan untuk data yang sangat kecil
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Ukuran Estimasi Kinerja Klasifikasi

Success Rate

* Satuan ukuran estimasi kinerja yang umum digunakan untuk
masalah klasifikasi adalah tingkat kesuksesan (success rate)

— Sukses: kelas suatu data diprediksi dengan benar
— Gagal/Error: kelas suatu data dipredikasi dengan tidak benar

— Success rate: proporsi kesuksesan terhadap semua data
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Ukuran Estimasi Kinerja Klasifikasi

Confusion Matrix

* Confusion matrix:

Predicted class
Yes No
Actual class Yes True positive | False negative
No False positive | True negative

* True positive rate: TP/(TP+FN)
* False positive rate: FP/(FP+TN)
* Success rate: (TP+TN)/(TP+TN+FP+FN)

* Error rate: 1 — Success rate
12



Kappa Statistic

* Misal confusion matrix untuk actual predictor (kiri) vs. random

predictor (kanan) adalah:

Predicted
class

a b o

a | B8 10 2

Actual

b 14 40 6
class

¢ 18 10 12

total 120 60 20

total

100

G

40

a

Actual

b
class

c

total

Predicted
class
a b Iy
60 30 10
36 18 6
24 12 4

120

6] 20

* Jumlah sukses: jumlah entri pada diagonal (D)

* Kappa statistic: Ukuran peningkatan kinerja relatif terhadap

observed

random predictor - —
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* Receiver Operating Characteristic (ROC) Curve adalah suatu kurva
yang mengambarkan estimasi kinerja klasifikasi untuk proporsi
false positives vs true positives yang bervariasi
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* For a small, focused sample, use method A
* For alarger one, use method B
* In between, choose between A and B with appropriate probabilities 15

Ukuran Estimasi Kinerja Klasifikasi

Klasifikasi dengan Costs

* Dalam prakteknya, berbagai jenis kesalahan klasifikasi sering
dikenakan biaya (cost) yang berbeda

* Contoh:
— Promotional mailing
— Terrorist profiling

Loan decisions

— Fault diagnosis
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Ukuran Estimasi Kinerja Klasifikasi

Cost Matrix

Contoh dua cost matrices:

Predicted class Predicted class

ves no a h c

Actual  yes 0 1 a 0 1 1
class

Actual

no 1 0
class

Success rate diganti dengan rata-rata biaya setiap prediksi
— Cost diberikan oleh entri yang sesuai pada cost matrix
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Ukuran Estimasi Kinerja Klasifikasi

Lift Charts

* Pada prakteknya, cost jarang diketahui

* Keputusan biasanya diambil dengan membandingkan skenario
yang mungkin

* Contoh: surat promosi ke 1000000 rumah
— Kirim ke semua (100%) - 1000 yang merespon (0.1%)
— Kirim ke 100000 (10%) - 400 yang merespon (0.4%)
— Kirim ke 400000 (40%) - 800 yang merespon (0:2%)

* Lift factor adalah faktor peningkatan respon, misal 4 pada kasus-
2, dan 2 pada kasus-3. Lift chart memungkinkan perbadingan

secara visual. 5



Ukuran Estimasi Kinerja Klasifikasi

Lift Charts
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for 10% of cost for 40% of cost 19

Ukuran Estimasi Kinerja Regresi

Mean-Squared Error

* Satuan ukuran estimasi kinerja yang populer digunakan untuk
masalah regresi adalah mean-squared error

— Nilai-nilai target sebenarnya: a, a,, ..., a

n

— Nilai-nilai target hasil prediksi: p, p,, ..., p,

(pl_al)2+"‘+(pn_an)2

n

— Mean-Squared Error:
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Ukuran Estimasi Kinerja Regresi

Satuan Ukuran Kinerja Lain

Root mean-squared error:

\/(pl—a1)2+...+(pn—an)2
n

Mean absolute arror kurang sensitif terhadap outlier
dibandingkan mean-squared error:

|p1_al|+"'+|.pn_an|
n

21

Ukuran Estimasi Kinerja Regresi

Satuan Ukuran Kinerja Lain

* Kadang-kadang relative error lebih cocok untuk suatu keadaan,
misal: 10% untuk error dari 50 ketika memprediksi 500.

a2 . \2
* Relative squared error: (p_l a1)2+'"+({7” a"z)
(a—a,)+...+(a-a,)

n

|p—a|+...+|p,—a,
|a—a|+...+|a—a,

* Relative absolute error:
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* Statistical correlation antara nilai sebenarnya dan nilai prediksi:

SPA
VSRS,
- Zj(pi_p)(ai_ ‘_3) — zj(pj_p)z 5 Zi(aj_ é)z
SPA_ n-1 SP_ n-1 SA_ n-1

Memiliki skala: -1 sd +1. Kinerja yang baik memiliki nilai yang
besar.
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Ukuran Estimasi Kinerja Regresi

Satuan Ukuran Kinerja Terbaik ?

Terbaik adalah dengan melihat semua satuan ukuran kinerja tsb

* Contoh: A B C D
Root mean-squared error 67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 334 29.2
Root rel squared error 42.2% | 57.2% | 39.4% ., |35.8%
Relative absolute error 43.1% | 40.1% | 34.8% . | 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

* D terbaik, C terbaik kedua, A & B dapat diperdebatkan
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\CUEREIERE I EN L EE

* Asumsikan estimasi kesuksesan adalah 75%. Seberapa dekat
hasil estimasi ini terhadap tingkat kesuksesan sebenarnya ?

— Tergantung dari jumlah data testing

* Kasus ini sangat mirip dengan pelemparan koin
— ,head” sebagai ,sukses”, ,tail“ sebagai ,gagal”

* Dalam statistik, kesuksesan dari kejadian-kejadian bebas seperti
ini dikenal dengan nama proses Bernoulli

— Teori statistik yang memberikan interval kepercayaan untuk
hasil sebenarnya
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Kehandalan Estimasi Kinerja

Proses Bernoulli

* Proses Bernoulli: tingkat kesuksesan p terletak pada suatu interval
tertentu dengan tingkat kepercayaan tertentu

* Contoh 1:S =750 sukses dalam N = 1000 percobaan
— Estimasi tingkat kesuksesan: 75%

— Seberapa dekat hasil ini pada tingkat kesuksesan sebenarnya p ?
Jawab: dengan tingkat kepercayaan 80%, p terletak pada interval
[73.2,76.7]

* Contoh 2:S =75 sukses dalam N = 100 percobaan

— Estimasi tingkat kesuksesan: 75%

— Seberapa dekat hasil ini pada tingkat kesuksesan sebenarnya p ?

Jawab: dengan tingkat kepercayaan 80%, p terletak pada interval
[69.1, 80.1] %



\CUEREIERE I EN L EE

Proses Bernoulli: Interval Kepercayaan

Probabiliti bahwa suatu variabel random X, dengan mean nol,
terletak pada interval kepercayaan dengan lebar 2z adalah:
Pr[-z£X<z]=c

Untuk distribusi yang simetri: Pr[-z< X <z] =1 -2 Pr[x 2 z]
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Kehandalan Estimasi Kinerja

Proses Bernoulli: Interval Kepercayaan

Interval kepercayaan untuk distribusi normal dengan mean 0 dan
variansi 1 adalah: PrX> 2] Z

0.1% 3.09

0.5% 2.58

\ 1% 2.33

/ 5% 1.65

10% 1.28

_/ L 20% | 0.84
-1 0 1 165 40% 0.25

Sehingga: Pr[-1.65 £ X < 1.65] = 90%

Untuk penggunaannya, kita harus mereduksi variable random

supaya memiliki mean 0 dan variansi 1
28



\CUEREIERE I EN L EE

Proses Bernoulli: Fakta

* Misal mean dan variansi untuk satu percobaan Bernoulli dengan
success rate p adalah p dan p(1-p).

* Jika dilakukan N percobaan, maka ekspektasi'success rate f = S/N
adalah suatu variabel random dengan mean yang sama p, dan
variansi direduksi oleh N menjadi p(1-p)/N
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Kehandalan Estimasi Kinerja

Proses Bernoulli: Tranformasi ke Distribusi N(0,1)

* Untuk mentransformasikan variabel random f memiliki distribusi
N(0,1), maka f dikurangi mean dan dibagi dengan standar deviasi,

yaitu: f-p
Vp(1-p)IN
Sehingga: Pr|—z< f—p <zZg§=cC
Vp(1-p)IN

* Diperoleh nilai p: p:(f+%1z\/%—§+4§2)/(1+%2)
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Kehandalan Estimasi Kinerja

Proses Bernoulli

Contoh 1: f = 75%, N=1000, c = 80% (sehingga z = 1.28), maka:
dengan tingkat kepercayaan 80%, p terletak pada interval [73.2,
76.7]

Contoh 2: f=75%, N=100, c = 80% (sehingga z = 1.28), maka:
dengan tingkat kepercayaan 80%, p terletak pada interval [69.1,
80.1]

Catatan: asumsi distribusi normal hanya valid untuk data yang
besar (N > 100). Perhatikan contoh berikut:

Contoh 3: f=75%, N=10, c = 80% (sehingga z = 1.28), maka:
dengan tingkat kepercayaan 80%, p terletak pada interval [54.9,
88.1] 3



