Dsar-Dasar Pemrograman 2:
Java Conditions and Loops

s
L. 2

Fariz Darari (fariz@cs.ui.ac.id)

N g

ey
E’. T r—

Y g
UL T T
- oo - //il f?}f;}

FAKULTAS

[LMU

- / e ‘E L - w ¢ ‘1‘ | e ‘/,..
TR ™ Al ﬂ:‘ /\:\ - <y \ eeto use, reuse, and share this work: @@@@
T e, NN B - e Mo ESareRE moree have!. N/ gy e sa

Relational operators

Relational operators are used to check conditions like whether two values

are equal, or whether one 1s greater than the other. The following expressions

show how they are used:

X ==y // x 1s
x =y // x 1s
X >y // % 1s
X <y // x 1s
X >=y // x 1s
X <=y // x 1s

equal to y
not equal to
greater than
less than y
greater than
less than or

y
y

or equal to y
equal to y

The result of a relational operator 1s one of two special values, true or false.

These values belong to the data type boolean; in fact, they are the only

boolean values.

Java has three logical operators

&& that is used for and
| | that is used for or

I that is used for not

Examples

For example, x > 0 && x < 10 1s true when x 1s both greater than zero and
less than 10. The expression evenFlag || n % 3 == 0 1s true if either con-
dition 18 true, that 1s. if evenFlag 1s true or the number n 15 divisible by 3.
Finally, the ! operator inverts a boolean expression. So !evenFlag 1s true 1if
evenFlag 1s not true.

De Morgan's laws

It yvou ever have to negate an expression that contains logical operators, and
vou probably will, De Morgan’s laws can help:

e !(A &% B) 1sthesameas 'A || !B

e !(A |] B) 1sthesameas 'A &k !B

Conditions

To write useful programs, we almost always need to check conditions and
react accordingly. Conditional statements give us this ability. The simplest
conditional statement i Java 1s the if statement:

if (x > 0) {
System.out.println("x is positive");

}

The expression n parentheses 1s called the condition. If it 18 true, the state-
ments in braces get executed. If the condition 1s false. execution skips over that
block of code. The condition in parentheses can be any boolean expression.

if and else

A second form of conditional statement has two possibilities, indicated by 1f
and else. The possibilities are called branches, and the condition determines

which one gets executed:

if (x%h 2==0) {
System.out.println("x is even");

} else {
System.out.println("x is odd");

}

If the remainder when x 1s divided by 2 18 zero, we know that x 1s even, and
this fragment displays a message to that effect. If the condition 1s false, the
second print statement 1s executed nstead. Since the condition must be true

or false, exactly one of the branches will run.

Quiz time: What's wrong?

1T (x > 0)

System.out.println("x 1s positive");
System.out.println("x 1s not zero");

Quiz time: What's wrong?

if (x > 0)
System.out.println("x 1s positive");
System.out.println("x 1s not zero");
This code 158 misleading because 1t’s not indented correctly. Since there are no

braces. only the first println 1s part of the if statement. Here 15 what the
compiler actually sees:

if (x > 0) {
System.out.println("x is positive");

System.out.println("x 1s not zero");

As a result. the second println runs no matter what. Even experienced
programmers make this mistake; search the web for Apple’s “goto fail” bug.

Chaining if and else

Sometimes you want to check related conditions and choose one of several
actions. One way to do this 1s by chaining a series of 1f and else statements:

if (x>0) {

System.out.println("x 1s positive");
} else if (x < 0) {

System.out.println("x is negative");
} else {

System.out.println("x is zero");

}

These chains can be as long as you want, although they can be difficult to
read 1if they get out of hand. One way to make them easier to read 1s to use
standard indentation, as demonstrated in these examples. If you keep all the
statements and braces lined up, you are less likely to make syntax errors.

Nesting if and else

In addition to chainine, vou can also make complex decisions by nesting one
By] P A

conditional statement nside another. We could have written the previous
example as:

if (x == 0) {
System.out.println("x is zero");
} else {
if (x > 0) {
System.out.println("x is positive");
} else {

System.out.println("x is negative");

while loop

public static void countdown(int n) {
while (n > 0) {
System.out.println(n);
n=mn-1;
}
System.out.println("Blastoff!");

F

You can almost read the while statement like English: “While n 15 greater
than zero, print the value of n and then reduce the value of n by 1. When you
get to zero, print Blastoft!”

while loop

The expression in parentheses 1s called the condition. The statements in braces
are called the body. The low of execution for a while statement 1s:

1. Ewvaluate the condition, yielding true or false.

2. If the condition 1s false, skip the body and go to the next statement.

3. It the condition 1s true, execute the body and go back to step 1.

This type of low 15 called a loop. because the last step loops back around to
the first.

for loop

public static void countdown(int n) {

for(int i = n; i > 0; i--) {
System.out.println(i);

}
System.out.println("Blastoff!");

for loop

for loops have three components in parentheses, separated by semicolons: the
initializer, the condition, and the update.

1. The initializer runs once at the very beginning of the loop.

2. The condition 1s checked each time through the loop. If 1t 15 false, the
loop ends. Otherwise, the body of the loop 1s executed (again).

3. At the end of each iteration, the update runs, and we go back to step 2.

do-while loop

The while and for statements are pretest loops; that 1s. they test the
condition first and at the beginning of each pass through the loop.

Java also provides a posttest loop: the do-while statement. This type of
loop 1s useful when you need to run the body of the loop at least once.

int 1 = 0;

do {
System.out.println("Hi!");

} while (i!=0);

Try run this, check if Hil is still printed out or not

take a break

int 1 = 0;
while(i < 6) {
System.out.print(i);
if(i == 3)
break;
14++;

0123

Check this out too: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

switch to be a better person

String you = "good";
switch(you) {
case "bad":
you = "good";
break;
case "good":
you = "better”;
break;
default:
you = "best"”;
}
System.out.println(you);

Credits: Think Java book by Allen Downey and Chris Mayfield

